Structural engineer
Structural engineers design, assess and inspect structures to ensure they are efficient and stable. Structural engineering was traditionally considered a sub-discipline of civil engineering, however, it has developed as an important and complex specialism and is now recognised as an engineering discipline in its own right.
For more information see: Civil engineer.
Structural engineers work on a very wide range of projects, including buildings, infrastructure and other structures. It is both a technical and creative role that involves close collaboration with professionals from other disciplines.
The scope of services provided by a structural engineer might include:
- Site appraisals and surveys.
- Geotechnical and geological investigations.
- The preparation of briefing documents, feasibility studies and options appraisals.
- The preparation of tender documentation and the assessment of tenders.
- Assessment and integration of work by specialists.
- Environmental studies.
- Material investigations.
- Ground improvement studies.
- The structural design and detailing of foundations, retaining walls buildings, roads, bridges and so on.
- Assessment of special loads.
- Fire protection of structures.
- Demolition assessment and design.
- Building regulations submissions.
- Risk assessment.
- Value management.
- On-site inspection and testing.
- Defect assessments the the development of remediation solutions.
- Expert witness testimony for courts and insurance purposes.
Structural failure can be devastating. It is important therefore to select an individual or company that has a good track record and experience in structurally similar projects. Suitably qualified professionals will generally be Chartered or Incorporated Engineers who are members of the Institution of Civil Engineers and/or the Institution of Structural Engineers.
Members of such institutes will generally be required to maintain their professional competence through an ongoing programme of continued professional development (cpd), to hold professional indemnity insurance and to comply with a code of practice.
It is good practice to employ a structural engineer based on their capability, competence and quality rather than simply by the lowest fee. A good design that explores a wide variety of options to find the best solution can save significant costs over the life of a building.
John Nolan, Institution of Structural Engineers President 2012 said in his Presidential Address; "One thing I am particularly proud of from that time is the contribution we made in value engineering the now ubiquitous McDonald’s 'drive-thru' down to a third of the cost and a third of the construction time of the traditionally built design. We did this by standardising the design to a structure that could be factory engineered and fitted out, transported to site in x6 3m by 12m modules and founded on prefabricated foundations. This concept has since saved hundreds of millions of pounds worldwide." This concept is in use now by the structural engineers.
To see some of the modules studied as part of an engineering course, see Construction engineering management course essentials.
[edit] Related articles on Designing Buildings
- Appointing consultants.
- Architect.
- Building information modelling.
- Civil engineer.
- Civil engineering dream projects.
- Collaborative practices.
- Concept structural design.
- Consultancy.
- Consultant team.
- Consultant team start-up meeting.
- Dead loads.
- Designers.
- Detailed design.
- Detailed structural design.
- Earthquake Design Practice for Buildings.
- Engineer.
- Engineering Council.
- Engineering the World - VandA Museum.
- Geotechnical engineering.
- Institution of Structural Engineers.
- Lead consultant.
- Lead designer.
- Limit state design.
- Live loads.
- Mixed news from the Perkins Review.
- Professional indemnity insurance.
- Scour.
- Section engineer.
- Services engineer.
- Specialist designers.
- Structural engineering codes.
- Structural principles.
- Structural steelwork.
- Structure definition.
- Surfside condo collapse: climate change demands adaptation in design and approach.
- Types of structural load.
- Types of structure.
[edit] External references
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Comments
Best civil design training institute