Structural principles
Contents |
[edit] Introduction
Within the context of the built environment, the term ‘structure’ refers to anything that is constructed or built from different interrelated parts with a fixed location on the ground. The structure is responsible for maintaining the shape and form under the influence of subjected forces.
[edit] Forces
It is important that the strength and stability of a structure and its individual components must be considered. Structural analysis is used to calculate the effects of the forces acting on any component and on the structure overall.
Three properties of forces that should be considered are:
- Magnitude : The size of the force.
- Direction : The direction in which the force is acting.
- Position : The position on which the force acts.
Isaac Newton developed three laws of motion:
- First law: An object will remain at rest or in uniform motion unless compelled to do otherwise by some external force acting on it.
- Second law: The acceleration of an object is caused by a force acting on that object.
- Third law: Action and reaction are equal and opposite.
One of the main structural principles is that elements such as the roof, floor and walls must remain stationary. For this to happen, there needs to be an equilibrium of forces – when the forces acting on them are equal and opposite. Under loading, some deflection and deformation – in the form of bending and buckling – may occur, and if this movement is not allowed for then structural failure may be the result. Therefore, a principle of structures is that they be designed to maintain a state of equilibrium; resisting external loads without moving.
The study of the causes and effects of stationary forces acting on rigid objects is statics. When a structure is stationary or in equilibrium, it is a ‘static body’. For a structure to remain static, three basic equations must hold true:
- Sum of all vertical forces must be zero.
- Sum of all horizontal forces must be zero.
- Sum of all bending forces, or moments, must be zero.
For more information, see Force.
[edit] Loads
Another principle is that the structure should be capable of withstanding the most severe combination of forces that are likely to be applied. This is determined by the geolocation relevant to the structure, such as in places where strong winds or heavy rain are common weather conditions.
The main types of load which a structure must be able to resist are:
- Dead loads : Such as the fixtures and structural elements.
- Live loads : Such as occupants, furniture, traffic.
- Environmental loads : Such as wind, snow, earthquake, settlement.
For more information, see Types of structural load.
[edit] Materials
The effectiveness of a structure depends on the mechanical properties of the materials from which it is constructed. These properties include:
- Strength
- Toughness
- Elasticity
- Plasticity
- Ductility
- Malleability
- Brittleness
- Hardness
For more information, see Construction materials.
[edit] Structural members
Structural members are the primary load bearing components of a building, and each have their own structural properties which need to be considered. Such members include:
- Beams : Horizontal members which transfer loads to supports.
- Columns : Vertical members which transfer compressive loads to the ground.
- Bracing : Members that interconnect and stiffen columns and beams.
- Roof trusses : Load-bearing frames constructed of connected triangular shapes.
- Retaining walls : Support soil where a sloping site requires excavation.
- Concrete slabs : Span horizontally between supports, used as floors and sometimes as roof systems.
- Footings : Transfer load from the structure to the foundations.
[edit] Related articles on Designing Buildings
- Bearing capacity.
- Bending moment.
- Building science.
- Building technology.
- Compression.
- Compressive strength.
- Concept structural design of buildings.
- Construction materials.
- Deflection.
- Detailed structural design.
- Earthquake Design Practice for Buildings.
- Elements of structure in buildings.
- Force.
- Moment.
- Multi-storey structure.
- Point load.
- Point of contraflexure.
- Primary structure.
- Shear force.
- Span.
- Stiffness.
- Structural engineer.
- Structural engineering codes.
- Structural steelwork.
- Structural vibration.
- Structure definition.
- Substructure.
- Superstructure.
- The design of temporary structures and wind adjacent to tall buildings.
- Tube structural system.
- Types of structural load.
- Types of structure.
- Vibrations.
- Wind comfort simulations.
- Wind tunnel.
Featured articles and news
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.