Elasticity in construction
Elasticity describes the degree to which a material returns to its original shape after an external force or load has caused it to deform. All materials to some degree show elastic characteristics, some more so than others. This behaviour is a crucial characteristic of building materials without which they would suffer continuous deformation under load and ultimately collapse.
Linear elasticity occurs when the deformation in a material is proportional to the load applied, on a graph of stress and strain the line is straight. So, if a person weighing 50kg causes a diving board to deflect by 300mm, and another person weighing 100kg causes an identical board to deflect by 600mm, the diving board is exhibiting linear deflection. Most structural materials are, within limits, linearly elastic and are used within their linearly elastic range. Hooke's law of elasticity (named after the English scientist Robert Hooke in 1660) states that, for relatively small deformations of an object, the displacement or size of the deformation is directly proportional to the deforming force or load ie it is linear.
The point where the elasticity of a material is increasingly less linear and becomes non-linear is call the proportional limit. Non-linear elasticity occurs when the deformation in a material is not always proportional to the load applied, the behaviour changes as the load varies. On a graph of stress and strain the line representing the behaviour of the material curves.
The degree of elasticity will usually depend on the individual structure of a material at a microscopic level. In polymers and rubbers elasticity is created by stretching polymer chains under an applied force, whilst in metals elasticity results from a resizing and reshaping of crystalline cells of the materials structure (lattice).
Elastic materials have a limit which is the maximum stress per unit area it can withstand before being permanently deformed, this is called the elastic limit. After this point the material behaviour is plastic (ie it doesn't return to its original form and is permanently deformed).
[edit] Related articles on Designing Buildings
- Concept structural design.
- Detailed design.
- Elastic limit.
- Elements of structure in buildings.
- Moment.
- Plasticity.
- Stiffness.
- Structural engineer.
- Structural principles.
- Structural systems for offices.
- Structural vibration.
- Structures at the end of their design life.
- The development of structural membranes.
- Types of structural load.
- Vibrations.
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Comments
[edit] To make a comment about this article, or to suggest changes, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.