Deflection
[edit] Introduction
Deflection – in engineering terms – is the degree to which an element of structure changes shape when a load is applied. The change may be a distance or an angle and can be either visible or invisible, depending on the load intensity, the shape of the component and the material from which it is made.
Deflection is a crucial consideration in the design of a structure and failure to apply due attention to it can be catastrophic.
Different types of load can cause deflections. These include point loads, uniformly distributed loads, wind loads, shear loads as well as ground pressure and earthquakes, to name but a few. When a load produces a deflection that is too great, the component may fail.
Components and structures that suffer deflection include, beams, columns, floors, walls, bridge decks, tunnel walls, dams and so on. San Francisco’s Golden Gate Bridge can sway by as much as 4m laterally under strong winds.
Non-structural components can also deflect, for example cladding panels on a building may deflect inwards when subject to intense wind loading.
Given the possibility of structural failure, building codes usually determine what the maximum allowable deflection should be to ensure the safety of a building’s users and overall structural integrity. For a beam, this is usually expressed as a fraction of the span, eg the beam’s deflection should not be greater than 1/360th of the span; so, if the span is 5m, the deflection should not be greater than 13.9mm. This will usually be measured at the mid-point of the beam.
A structural element will deflect less under load if its stiffness or rigidity is increased. This can usually be achieved by strengthening its section or increasing its size; the latter may also increase its cost.
The material itself must also be considered. For example, because aluminium is around three times more flexible than steel, it is often designed for deflection rather than strength. In contrast, glass is relatively inflexible: even slight deflections in a steel frame could cause the glass to fracture.
[edit] Related articles on Designing Buildings Wiki
- Approved Document A.
- Concept structural design of buildings.
- Elements of structure in buildings
- Institution of Structural Engineers IStructE.
- Span.
- Structural principles.
- Structures at the end of their design life.
- Substructure.
- Superstructure.
- The development of structural membranes.
- Tower.
- Types of structure.
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.