Compression
Contents |
[edit] Simple compression
Simple compression occurs when the particles of a material are pushed against each other. As a state of stress, it is the opposite of tension, where particles are pulled apart.
When a column supports a load (or weight) from above, it is said to be under compressive stress; it also shortens – a typical consequence of compression. The same applies to a strut in a truss or bridge which is designed to work solely in compression.
Compressive shortening is proportional to the load per unit area (of a column) and is typical of compression, just as lengthening is typical of tension. In addition to the compressive shortening which takes place along the longitudinal axis (usually the centre line), there is also lengthening that occurs at right angles to the longitudinal axis. In other words, the column gets shorter and fatter.
Strictly speaking, a compression member such as a column or strut is subject only to axial compressive forces ie the load is applied through the member’s centre and along the longitudinal axis. The stress in the compressed member is given by the load over the cross-sectional area.
Simple compression is a common phenomenon in building structures as all loads and forces have eventually to be directed into the ground. Thus, they occur in Greek temples as much as in Manhattan skyscrapers.
[edit] Strength of materials
Concrete, masonry are materials with high compressive strengths but they are also weak in resisting tension. Steel has a high compressive strength and also a high tensile strength and can resist the same compressive forces as concrete or masonry but with a slimmer profile.
[edit] Buckling
When a material has sufficient compressive strength to allow the use of smaller cross-sections, the result may be lower costs but this could have side effects. Increasing the slenderness ratio (the column length is many times greater compared to the cross-sectional area), may lead to buckling. If the load is great combined with a relatively small cross-sectional area, the column may buckle as it is easier for it to bend outwards (or buckle), rather than shorten. Buckling may also be exacerbated by eccentric loads.
Whether a column reaches its buckling load limit will depend on numerous factors, including its length, the type of material, the cross-sectional shape and how it is restrained at its ends.
[edit] Compressive structures
Being built mostly from masonry, Greek and Roman temples, and Romanesque and Gothic cathedrals, are structures almost entirely under compression.
An arch in brickwork or stonework has simple, uniform compression and no bending (and therefore little or no tension). The thrust of the arch – compressive forces diverging down and either side of the keystone – is absorbed by the abutments on either side. For more information see: Arch
The flying buttress in a Gothic cathedral channels forces of compression from the roof and walls down into the foundations. For more information see: Flying buttress
When under load, a dome develops compressive stresses along its meridians; these can be thought of as an infinite number of arches connecting opposite points on the ground circumference. The dome will also develop compressive or tensile stresses around its hoops (lines of ‘latitude’). For more information see: Dome
[edit] Related articles on Designing Buildings
- Arch.
- Barrel vault.
- Concrete.
- Dome.
- Elements of structure in buildings
- Engineer.
- Flying buttress.
- Shear strength.
- Steel.
- Stress.
- Structural engineer.
- Structural principles.
- Strut.
- Substructure.
- Superstructure.
- Tensile strength.
- Tension.
- Ties.
- Tower.
- Types of structure.
- Vibration Compaction Technology.
- Voussoir.
Featured articles and news
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
A brief description of a smart construction dashboard, collecting as-built data, as a s site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure bill oulined
With reactions from IHBC and others on its potential impacts.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.