Tension
Tension is a state of stress in which a material is being pulled apart, for example a cable that is attached to a ceiling with a weight fixed to its lower end. Under the influence of gravity, the weight exerts a downward pressure that produces tension in the cable, as does the reaction at the fixing point in the ceiling.
A similar effect will be produced by two people each holding one end of a length of rope and pulling hard. Another example is a lift car that is moved by steel cables – the fibres in the cables will tend to be pulled apart by the weight of the lift car.
In both the above cases, the fibres become longer as a result of the weight applied. When a unit length of material becomes elongated, it is termed ‘tensile strain’.
As long as the cable is not stressed above its elastic range, the extent of lengthening will depend on its cross section, its length and the load applied. The larger the cable diameter, the smaller the unit elongation. Experiments have shown that elongation is inversely proportional to the area, so a member of 20mm2 cross-sectional area will stretch half the amount of a member of the same material that is 10mm2.
Hooke’s Law states that an increase in the load produces a proportionate increase in elongation and that this elongation is directly proportional to the length of the member. So, for a given load and given length of member, a member 2m-long will stretch twice as much as a 1m-long member of the same material.
In addition to elongation (the main consequence) other deformations may occur when a material is subjected to simple tension. If a material is carefully measured before and after a load is applied, it is observed that with the increase in load and the accompanying elongation, there is also an increase in diameter. This phenomenon was first observed by the French 19th century physicist Poisson.
Poisson’s ratio is the relationship between the lateral strain and horizontal strain. For steel it is around 0.33.
Tension has different effects on materials: concrete does not accommodate tensile stresses well and may crack and suffer extensive damage – with little elongation; while steel is very strong in tension and can elongate substantially under load. It is for this reason that concrete is often reinforced with steel rebar.
The opposite of tension is 'compression' which sees materials pushed or compressed together when a compressive force is applied.
Structures with tension elements include:
Three-dimensional tensile structures typically form doubly-curved shapes that are either anticlastic or synclastic.
For more information see: Tensile structures.
[edit] Related articles on Designing Buildings
Featured articles and news
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA has launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.