Tension
![]() |
![]() |
![]() |
![]() |
Tension is a state of stress in which a material is being pulled apart, for example a cable that is attached to a ceiling with a weight fixed to its lower end. Under the influence of gravity, the weight exerts a downward pressure that produces tension in the cable, as does the reaction at the fixing point in the ceiling.
A similar effect will be produced by two people each holding one end of a length of rope and pulling hard. Another example is a lift car that is moved by steel cables – the fibres in the cables will tend to be pulled apart by the weight of the lift car.
In both the above cases, the fibres become longer as a result of the weight applied. When a unit length of material becomes elongated, it is termed ‘tensile strain’.
As long as the cable is not stressed above its elastic range, the extent of lengthening will depend on its cross section, its length and the load applied. The larger the cable diameter, the smaller the unit elongation. Experiments have shown that elongation is inversely proportional to the area, so a member of 20mm2 cross-sectional area will stretch half the amount of a member of the same material that is 10mm2.
Hooke’s Law states that an increase in the load produces a proportionate increase in elongation and that this elongation is directly proportional to the length of the member. So, for a given load and given length of member, a member 2m-long will stretch twice as much as a 1m-long member of the same material.
In addition to elongation (the main consequence) other deformations may occur when a material is subjected to simple tension. If a material is carefully measured before and after a load is applied, it is observed that with the increase in load and the accompanying elongation, there is also an increase in diameter. This phenomenon was first observed by the French 19th century physicist Poisson.
Poisson’s ratio is the relationship between the lateral strain and horizontal strain. For steel it is around 0.33.
Tension has different effects on materials: concrete does not accommodate tensile stresses well and may crack and suffer extensive damage – with little elongation; while steel is very strong in tension and can elongate substantially under load. It is for this reason that concrete is often reinforced with steel rebar.
The opposite of tension is 'compression' which sees materials pushed or compressed together when a compressive force is applied.
Structures with tension elements include:
Three-dimensional tensile structures typically form doubly-curved shapes that are either anticlastic or synclastic.
For more information see: Tensile structures.
[edit] Related articles on Designing Buildings
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Preparing for the future: how specifiers can lead the way
Effective specificationand the Future Homes Standard.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February