Limit state design
Contents |
[edit] What is limit state design
Loading or other actions imposed on a structure can result in a ‘limit state’, where the structure’s condition no longer fulfils its design criteria, such as; fitness for use, structural integrity, durability, and so on. Limit states are conditions of potential failure.
Limit state design (LSD) is a structural engineering design method. All actions likely to occur during a structure’s design life are considered to ensure that the structure remains fit for use with appropriate levels of reliability. Limit state design involves estimating the subjected loads on a structure, choosing the sizes of members to check, and selecting the appropriate design criteria.
Limit state design requires that two principal criteria are satisfied:
- Ultimate limit state (ULS).
- Serviceability limit state (SLS).
[edit] Ultimate limit state (ULS)
Ultimate limit state (ULS) is design for the safety of a structure and its users by limiting the stress that materials experience.
The ultimate limit state is a purely elastic condition, usually located at the upper part of its elastic zone (approximately 15% lower than the elastic limit). This is in contrast to the ultimate state (US) which involves excessive deformations approaching structural collapse, and is located deeply within the plastic zone.
If all factored bending, shear and tensile or compressive stresses are below the calculated resistances then a structure will satisfy the ULS criterion. Safety and reliability can be assumed as long as this criterion is fulfilled, since the structure will behave in the same way under repetitive loadings.
BS EN 1990 Eurocode – 'Basis of structural design' describes four ultimate limit states:
- EQU: Loss of static equilibrium of the structure.
- STR: Internal failure or excessive deformation of the structure.
- GEO: Failure or excessive deformation of the ground.
- FAT: Fatigue failure of the structure.
[edit] Serviceability limit state (SLS)
Servicability limit state (SLS) is design to ensure a structure is comfortable and useable. This includes vibrations and deflections (movements), as well as cracking and durability. These are the conditions that are not strength-based but still may render the structure unsuitable for its intended use, for example, it may cause occupant discomfort under routine conditions. It might also involve limits to non-structural issues such as acoustics and heat transmission.
Servicability limit state requirements tend to be less rigid than strength-based limit states as the safety of the structure is not in question.
A structure must remain functional for its intended use subject to routine loading in order to satisfy SLS criterion.
[edit] Related articles on Designing Buildings
- Adaptive structures.
- Anticlastic structures.
- Biaxial bending.
- Braced frame.
- Building science.
- Concept structural design of buildings.
- Defects in construction.
- Lateral loads.
- Material utilisation (MUT).
- Shear force.
- Structural engineer.
- Structural steelwork.
- Structural vibration.
- Synclastic.
- Types of structural load.
[edit] External resources
- BGStructural Engineering - LSD
- Handbook of structural steelwork, Eurocode Edition, 2013.
Featured articles and news
ECA progress on Welsh Recharging Electrical Skills Charter
Working hard to make progress on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.