Damp proof membrane DPM
Contents |
[edit] What problems does damp cause in buildings?
Damp in buildings can cause a number of serious problems, such as:
- Damp patches.
- Mould growth, which is a cause of respiratory allergies.
- Mildew, salts, staining and ‘tide marks’.
- Damage to surface finishes.
- Corrosion and decay of the building fabric.
- Slip hazards.
- Frost damage.
- Poor performance of insulation.
- Damage to equipment, or electrical failure.
[edit] What are the causes of damp in buildings?
The most common causes of persistent damp in buildings are:
- Surface condensation.
- Interstitial condensation (condensation within the fabric of a building's construction, either on the surfaces of components that make up the fabric, or sometimes within the components themselves).
- Penetrating damp.
- Rising damp.
[edit] What regulates the requirement for a damp proof membrane?
Approved document C, Site preparation and resistance to contaminants and moisture, requires that (where appropriate) floors next to the ground should:
- Resist the passage of ground moisture to the upper surface of the floor.
- Not be damaged by moisture from the ground.
- Not be damaged by groundwater.
- Be designed and constructed so that their structural and thermal performance are not adversely affected by interstitial condensation.
- Should not promote surface condensation or mould growth.
[edit] What is a damp proof membrane?
A damp proof membrane (DPM) is a thin, sheet material used to prevent moisture transmission. Typically, a damp proof membrane is a polyethylene sheet laid under a concrete slab to prevent the concrete from gaining moisture from the ground by capillary action.
The approved document suggests that a ground-supported floor will meet these requirements if the ground is covered with dense concrete laid on a hardcore bed and a damp proof membrane is provided. It suggests that the damp proof membrane may be above or below the concrete, and continuous with the damp proof courses (DPCs) in walls, piers, and other structures.
If the ground could contain water soluble sulphates, or there is any risk that sulphate or other deleterious matter could contaminate the hardcore, the membrane should be placed at the base of the concrete slab.
The approved document proposes that:
- A membrane below the concrete could be formed with a sheet of polyethylene, which should be at least 300μm thick (1200 gauge) with sealed joints and laid on a bed of material that will not damage the sheet.
- A membrane laid above the concrete may be either polyethylene sheet as described above (but without the bedding material) or three coats of cold applied bitumen solution or similar moisture and water vapour resisting material. It should be protected by either a screed or a floor finish, unless the membrane is pitchmastic or similar material which will also serve as a floor finish.
In order to resist degradation, insulation placed below the damp proof membrane should have low water absorption. If necessary the insulant should be resistant to contaminants in the ground.
A timber floor finish laid directly on concrete may be bedded in a material which may also serve as a damp-proof layer. Timber fillets laid in the concrete as a fixing for a floor finish should be treated with an effective preservative unless they are above the damp-proof membrane.
[edit] Related articles on Designing Buildings
- Basement waterproofing.
- Bitumen.
- Blinding.
- Breather membrane.
- Capillary action.
- Cavity tray.
- Chemical injected DPC.
- Damp.
- Damp proof course.
- Damp proofing.
- Does damp proofing work?
- Dew point.
- Humidity.
- Insulation.
- Interstitial condensation.
- Penetrating damp.
- Polyethylene.
- Rising damp.
- Types of damp-proof courses.
- Vapour barrier.
Featured articles and news
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA has launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Comments
[edit] To make a comment about this article, or to suggest changes, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.