Dew point
Air will generally include moisture in the form of water vapour.
Relative humidity (RH) is a measure of the water vapour density of air compared to the water vapour density for saturated air at the same temperature and pressure (that is, the maximum amount of moisture that air can “hold” at that temperature and pressure). It is expressed as a percentage.
RH = (actual water vapour density / saturation water vapour density) x 100
When air cools, it is less able to “hold” moisture, that is, the saturation water vapour density falls, and so relative humidity rises. When the relative humidity reaches 100%, the air will be saturated. This is described as the ‘dew point’ temperature, or the ‘saturation temperature’. If the air continues to cool, moisture will begin to condense. Where this condensate forms on a surface, it can be described as ‘dew’, hence the term ‘dew point’.
Understanding this phenomena is important in the design and construction of new buildings, and in the assessment of existing buildings, as the formation of condensation can be damaging, can affect comfort and can be a hazard to health.
Surface condensation occurs where water condenses on the exposed internal surfaces of a building, such as ‘cold’ windows.
Interstitial condensation occurs when the dew point temperature is reached within the fabric of the building, either on the surfaces of components that make up the fabric, or sometimes within the components themselves.
Condensation can cause:
- Mould growth which is a cause of respiratory allergies.
- Mildew.
- Staining.
- Corrosion and decay of the building fabric.
- Frost damage
- Poor performance of insulation.
- Damage to equipment.
- Slip hazards.
Software is available to help calculate dew points, particularly in relation to interstitial condensation, the position of which within the building fabric is crucial if potential problems are to be avoided.
[edit] Related articles on Designing Buildings
- Cavity wall.
- Cold bridge.
- Condensation.
- Dehumidification.
- Deliquescence point.
- Diagnosing the causes of dampness (GR 5 revised).
- Dry-bulb temperature.
- Humidity.
- Insulation specification.
- Interstitial condensation.
- Moisture.
- Psychometric chart.
- Saturation.
- Sling psychrometer.
- Solid wall insulation.
- Thermal comfort.
- Thermal indices.
- Temperature.
- Understanding dampness.
- Water vapour.
- Wet-bulb temperature.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.