Mould growth in buildings
Contents |
[edit] Introduction
TG 26 Mould in Buildings, A BSRIA topic guide, written by Spyros Efthymiopoulos & Yasemin D. Aktas, and published by BSRIA in 2024, states: 'Mould is a subcategory of the fungal kingdom. It is broadly composed of spores and filaments, known as hyphae as shown in the image below. These collectively form a filamentous network called mycelium. Mould is ubiquitous in indoor and outdoor environments. As a large portion of the fungal kingdom, moulds account for thousands, if not millions, of known and unknown species.'
Mould (sometimes referred to as mildew) is a fungal growth. Whilst mould itself is not toxic, some moulds can produce toxins that can have negative effects on human health, for example causing asthma, rhinitis, itchy eyes, respiratory symptoms, respiratory infection and eczema.
Mould in buildings can be visible or can be hidden, but it is generally an indication of a defect such as thermal bridging, condensation, leaks or penetrating or rising damp.
Mould requires four factors for growth:
- Mould spores.
- Food.
- Appropriate temperature.
- Moisture.
[edit] Spores
Mould spores are microscopic (ranging from 3 to 40 microns) and ubiquitous in the environment. Mould spores can be found floating in the air and in normal house dust. It is not generally practical therefore to eliminate mould spores and this is not a strategy for controlling mould growth.
[edit] Food
Mould will feed on any substance that contains carbon atoms (such as organic substances). Many of the natural materials found in the built environment provide suitable food for mould, such as timber and paper. Removing sources of food for mould from an environment is generally impractical.
[edit] Appropriate temperature
The majority of moulds grow well in a range of temperatures similar to those that humans require. This temperature range is wide, and even temperatures close to freezing will not prevent growth. In warmer environments, moulds will thrive. It is generally impractical therefore to control mould growth through temperature.
[edit] Moisture
Most moulds require relatively high levels of moisture in order to grow. The majority require an equivalent of at least 70% relative humidity to thrive and most large mould outbreaks in buildings, occur where porous, cellulose-type materials contain persistent liquid water or condensation.
Humans typically prefer humidity levels below 70% and so limiting moisture availability and killing and removing active mould colonies is generally the easiest method of control.
For more information, see Moisture.
[edit] Methods for reducing moisture levels
In Europe, depending on the country, it is estimated that between 10% and 50% of buildings are damp (ref. WHO Europe, Damp and mould, Health risks, prevention and remedial actions 2009).
Moisture levels can be reduced through a number of measures:
- Natural or mechanical ventilation.
- Use of de-humidifiers or air conditioning units.
- Insulation of cold surfaces, such as pipes.
- Increasing air temperature.
- Removing sources of moisture such as drying clothes and ensuring vented tumble dryers are appropriately vented to the outside.
- Mending leaking pipes, wastes and overflows.
- Eliminating rising damp and penetrating damp.
[edit] Related articles on Designing Buildings
- Approved Document C.
- Aspergillus.
- BSRIA topic guide on mould in buildings TG 26/2024.
- Condensation.
- Damp and timber report.
- Damp proofing.
- Degradation of construction materials.
- Dry rot fungus.
- Humidity.
- Moulds in historic buildings.
- Moisture.
- Penetrating damp.
- Recognising wood rot and insect damage in buildings.
- Rising damp.
- Rising damp in walls - diagnosis and treatment (DG 245).
- Stachybotrys.
- Wet rot.
[edit] External references
Featured articles and news
Preparing for the future: how specifiers can lead the way
Effective specificationand the Future Homes Standard.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Update on the future of Grenfell Tower
Deputy Prime Minister decides for it be carefully taken down to the ground.
Ending decades of frustration, misinformation and distrust.