Reversible and irreversible expansion in construction
Contents |
[edit] Introduction
Most building materials suffer movements which can be caused by changes in temperature, changes in moisture content, subsidence and so on. Porous building materials, for example, can suffer from sudden changes to their original moisture content. In some materials, this sudden change can occur immediately after the process of manufacture and can continue during storage and distribution; it will depend on the properties of the material.
Changes can include expansion, contraction, deformation and so on and can sometimes lead to problems such as cracking and water penetration, or even failure.
Very broadly, expansion can be either reversible or irreversible.
[edit] Irreversible expansion
As an example of irreversible expansion, due to the intense heat involved, newly-fired clay bricks will be very dry as they emerge from the kiln. Their very low moisture content combined with sudden exposure to the atmosphere will mean they can absorb moisture from the air until they have reached a point of normal or atmospheric moisture level. This increase in moisture content causes expansion of the brick which is irreversible: the brick is marginally larger than when it was originally formed and will not shrink back to its original size.
Irreversible expansion can also be seen in calcium silicate bricks (made from mainly sand, lime and quartz). Formed in an autoclave under high heat, moisture and pressure, they are more saturated than clay bricks and after the process will immediately shrink until they have reached a moisture content that is in equilibrium with the of the prevailing air.
In both cases, before newly manufactured bricks are used on site, time is usually allowed for this irreversible expansion to be completed, otherwise cracking may occur if they are used immediately. In many cases, this is achieved by the time taken to store and distribute the bricks to the end user.
[edit] Reversible expansion
Reversible expansion usually occurs as a result of moisture absorption when materials are in use, e.g on a building in an exposed location. The material may expand when wet and contract as it dries out. This cycle may be repeated for the life of the material and can be accommodated with the correct provision of movement joints.
Thermal expansion may also be reversible. For example, metals will tend to expand when they become hot and contract when they cool.
For more information see: Thermal expansion.
Moisture present in buildings may freeze during cold weather, expanding as the water turns to ice, then thawing as temperatures increase. This repeated freeze-thaw cycle can result in significant damage, such as cracking brickwork, bursting pipes and so on.
For more information see: Frost attack.
[edit] Related articles on Designing Buildings Wiki
- Cracking in buildings.
- Defects in brickwork.
- Defects in construction.
- Defects in stonework.
- Frost attack.
- Ground heave.
- Latent defects.
- Leaning Tower of Pisa.
- Movement joint.
- Preventing wall collapse.
- Settlement.
- Sinkholes.
- Subsidence.
- Thermal expansion.
- Underpinning.
- Why do buildings crack? (DG 361).
Featured articles and news
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.





















