Reversible and irreversible expansion in construction
Contents |
[edit] Introduction
Most building materials suffer movements which can be caused by changes in temperature, changes in moisture content, subsidence and so on. Porous building materials, for example, can suffer from sudden changes to their original moisture content. In some materials, this sudden change can occur immediately after the process of manufacture and can continue during storage and distribution; it will depend on the properties of the material.
Changes can include expansion, contraction, deformation and so on and can sometimes lead to problems such as cracking and water penetration, or even failure.
Very broadly, expansion can be either reversible or irreversible.
[edit] Irreversible expansion
As an example of irreversible expansion, due to the intense heat involved, newly-fired clay bricks will be very dry as they emerge from the kiln. Their very low moisture content combined with sudden exposure to the atmosphere will mean they can absorb moisture from the air until they have reached a point of normal or atmospheric moisture level. This increase in moisture content causes expansion of the brick which is irreversible: the brick is marginally larger than when it was originally formed and will not shrink back to its original size.
Irreversible expansion can also be seen in calcium silicate bricks (made from mainly sand, lime and quartz). Formed in an autoclave under high heat, moisture and pressure, they are more saturated than clay bricks and after the process will immediately shrink until they have reached a moisture content that is in equilibrium with the of the prevailing air.
In both cases, before newly manufactured bricks are used on site, time is usually allowed for this irreversible expansion to be completed, otherwise cracking may occur if they are used immediately. In many cases, this is achieved by the time taken to store and distribute the bricks to the end user.
[edit] Reversible expansion
Reversible expansion usually occurs as a result of moisture absorption when materials are in use, e.g on a building in an exposed location. The material may expand when wet and contract as it dries out. This cycle may be repeated for the life of the material and can be accommodated with the correct provision of movement joints.
Thermal expansion may also be reversible. For example, metals will tend to expand when they become hot and contract when they cool.
For more information see: Thermal expansion.
Moisture present in buildings may freeze during cold weather, expanding as the water turns to ice, then thawing as temperatures increase. This repeated freeze-thaw cycle can result in significant damage, such as cracking brickwork, bursting pipes and so on.
For more information see: Frost attack.
[edit] Related articles on Designing Buildings Wiki
- Cracking in buildings.
- Defects in brickwork.
- Defects in construction.
- Defects in stonework.
- Frost attack.
- Ground heave.
- Latent defects.
- Leaning Tower of Pisa.
- Movement joint.
- Preventing wall collapse.
- Settlement.
- Sinkholes.
- Subsidence.
- Thermal expansion.
- Underpinning.
- Why do buildings crack? (DG 361).
Featured articles and news
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Refurbishment for net zero; the BSRIA white paper
The everyday practice of tackling energy efficiency, fabric first, ventilation, air quality, and occupant wellbeing.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Stress Awareness Week ends but employer legal duties continue.
A call to follow the five Rs for the business and for the staff.
Key points and relevance to construction of meeting, due to reconvene.
Cladding remediation programmes, transparency and target date.
National Audit Office issue report on cladding remediation.
HBPT and BEAMS Jubilees. Book review.
Does the first Labour budget deliver for the built environment?
What does the UK Budget mean for electrical contractors?
Mixed response as business pays, are there silver linings?