Ground heave
Contents |
[edit] Introduction
Ground heave is the upward movement of the ground usually associated with the expansion of clay soils which swell when wet. As the soil generally cannot expand downwards or sideways, the result is that the exposed upper surface of the soil rises up. The impact of heave is opposite to the effect of subsidence which is where soil is unstable and sinks downward, or settlement which is caused by the weight of a building.
Displacement is generally less than 150 mm, however, even this level of movement can lead to serious structural damage to building foundations and fabric. Long-term damage could be incurred that may not be detected for some time, but can significantly affect a property’s value.
[edit] Causes of ground heave
The most common cause of ground heave is associated with trees which have died or been removed. As the root network no longer draws water from the subsoil, water accumulates in the ground, resulting in swelling that can move building structures upwards.
Additional causes of ground heave may include:
- ‘Stress relief’ (or overburden recovery) attributable to soil being removed from an excavation and so relieving pressure on layers below. This may occur for example in the construction of basements.
- A change in the level of the water table.
- Broken drains or nearby building works that interfere with existing ground drainage.
- Swelling of the sub-soils due to seasonal weather changes.
- Water expanding as it freezes causing soil to swell. Some particular soils, such as silty and sandy clays, can be more susceptible than others.
[edit] Signs of ground heave
Common signs of ground heave may include:
- Cracking to brickwork and windows. This cracking is more likely to be vertical, whereas subsidence cracking is more likely to be diagonal.
- Doors sticking as their frames become out of square.
- Lifting of paths and patios surrounding buildings.
[edit] Prevention and remedying of ground heave
Surveys will indicate whether heave has occurred that may impact upon a building, and may advise, for example, on the potential risks of proposed works such removing trees near buildings. Investigations may include visual inspection, historic research and drilling boreholes to determine the moisture profile of the soil.
Where heave is likely to be a problem, cellular structures may be installed beneath foundations and floor slabs to reduce the upward force of heave from transmitting to the structure above. For more information, see Cellular raft foundation.
Remedying damage due to ground heave can be a lengthy and expensive process. Where heave is the result of an underlying problem, remedial works such as repairing leaking drains or removing vegetation may resolve the problem.
Where the soil itself is prone to heave, underpinning may be necessary to stabilise structures. Excavated soil from beneath existing foundations is replaced with material, usually concrete, in a series of phases to form a new foundation beneath the existing one, reaching down to subsoils that are not prone to heave. It may be necessary to leave a cavity beneath the structure to accommodate future movement of the upper layers of soil.
[edit] Related articles on Designing Buildings Wiki
- Brownfield land.
- Cellular raft foundation.
- Contaminated land.
- Cracking and building movement.
- Defects in brickwork.
- Defects in construction.
- Defects in stonework.
- Driven piles.
- Foundations.
- Ground anchor.
- Ground conditions.
- Ground improvement techniques.
- Groundworks.
- Latent defects.
- Lateral loads.
- Remedial works.
- Settlement.
- Sinkholes.
- Subsoil.
- Tree rights.
- Tree root subsidence.
- Underpinning.
- Uplift force.
- Why do buildings crack? (DG 361).
[edit] External references
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Comments
Can anyone inform as to how many years heave will last?