Maintenance of drainage systems to prevent flooding and water pollution
Every building has a drainage system. In fact, most have two – a foul drainage system that takes waste from toilets, showers etc. and a storm/surface water drainage system that takes rainwater from roofs and paved areas. Older buildings may have a combined system, and in some locations the infrastructure buried under the street is a combined sewer – a legacy from the pioneering days of city sewerage systems.
As with maintenance of any building services systems, the first step is to know what you’ve got. Every site should have a drainage plan, showing which drains are located where, what direction they flow in and what they connect to. If there isn’t one, it’s not hard to create one – even though the pipes are buried, there’s plenty of evidence above ground in the form of manholes.
When there is a drainage plan, it’s worth checking how correct and up-to-date it is. Sometimes, the exercise of doing this brings up evidence of mis-connections, such as a new loo discharging into a storm manhole. It’s also worth marking drain covers with the service (F for foul or S for storm) and a direction arrow.
In foul drainage systems, the biggest headaches are caused by things going down the drain which shouldn’t – like wet wipes, sanitary products and hand towels. So the best form of preventative maintenance is to keep building occupants informed, with polite notices and clearly-marked bins in strategic places. Then there is the fats, oils and greases (FOG) that go down the plughole in catering establishments. If these find their way into the drains and sewers, they’re pretty much guaranteed to solidify and cause blockages – sometimes known as ‘fatbergs’. That’s why there should always be an interceptor in place, also known as a grease trap. This needs maintenance – the generic frequency for cleaning out a grease trap, stated in SFG20 (a common approach to planned preventative maintenance), is monthly. But this will be highly dependent on how the facility is used.
If blockages go unchecked, they may also go unnoticed. That is until sewage starts backing up into the building, or overflowing into storm sewers, which eventually discharge into lakes and rivers. These are delicate ecosystems, and the introduction of detergents and faecal matter can be very harmful to aquatic life and of course humans.
Rain, can pick up contaminants from both the air and the land, so once it has reached a storm/surface water drainage system, it has picked up dirt, oil and chemicals from air pollution, roofs and paved areas. Traditional systems have no means of dealing with this, and also must be sized for occasional extreme storm events, so the pipes are very large and mostly used at a fraction of their capacity. Sustainable drainage systems, or SuDS, attenuate the flow of rainwater to watercourses and emulate the way natural ecosystems treat this water. But they need maintenance. For example, any tree routes that could block a soakaway should be trimmed annually, and green roofs may require weeding on a weekly basis during the growing season.
For more information on the maintenance of drainage systems, please explore the BSRIA Information Service.
This article was originally published on the BSRIA Blog on August 12 2020. It was written by David Bleicher, BSRIA Publications Manager.
--BSRIA
[edit] Related articles on Designing Buildings
- Approved Document H.
- BSRIA articles.
- BSRIA.
- Cesspool.
- Difference between drains and sewers.
- Drainage.
- Drainage and sewerage management plans DSMPs.
- Grease management.
- Private sewer.
- Public sewer.
- Rain gutter.
- Rainwater downpipe.
- Rainwater harvesting.
- Safe working in drains and sewers.
- Septic tank.
- Sewerage.
- Soakaway.
- Sustainable urban drainage systems SUDS.
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.