An introduction to Volatile Organic Compounds for building managers
Contents |
[edit] Can Volatile Organic Compounds (VOCs) be as scary as they sound ?
One benefit of the COVID-19 pandemic is the heightened awareness of indoor air quality and how this may be affected by airborne diseases, noxious gases and volatile organic compounds. In the UK, where people spend an average of over 90% of their time indoors, it’s crucial for building managers to ensure optimal air quality for building inhabitants.
In this article, we’ll provide more information about volatile organic compounds and how organisations can monitor VOC levels to keep their occupants safe.
[edit] What are volatile organic compounds?
Volatile organic compounds (known as VOCs) refer to a group of volatile compounds and organic molecules that various products and processes emit into our atmosphere. At room temperature, VOCs have a high vapour pressure and a low water solubility, causing them to become volatile. VOCs are pollutants that present genuine risks to human health if people are exposed to them for long periods of time.
[edit] Where do VOCs come from?
VOCs in the atmosphere can be biogenically created by plants. These natural VOCs don’t pose a direct risk to the health of humans. However, it is estimated that only 5% of the VOC's emitted into the atmosphere in the UK are emitted from vegetation.
The rest comes from:
- Transport (50%)
- Solvent use (30%)
- Other industrial processes (15%)
These man-made compounds present a far greater health risk to people. And in an indoor environment, they are usually about ten times more concentrated.
- Solvents
- Paints
- Pesticides
- Aerosols
- Air fresheners
- Cleaning products
- Adhesives
- Disinfectants
- Office printers and copiers
- New furniture and carpets
- Refrigerants
- Wood preservatives
- Paints and paint strippers
- Building materials
- … and more
Common examples of VOCs we encounter include:
- Benzene from petroleum
- Formaldehyde, which common in many fabrics, coatings and building materials
- Acetone, found in wallpaper and nail varnish remover
- Ethanol from paints
- Butanone found in coating, glues and cleaning products
- Ethylene glycol, which is used in industrial solvents, paints and detergents
- Methylene chloride, which is used for degreasing, paint strippers, cleaning chemicals
- What are the impacts of VOCs on human health?
There are several health risks that are associated with VOCs, the severity of which depends on the level of exposure and the nature of the VOC.
Along with things like liver and kidney damage (long-term exposure to high levels of VOCs), exposure to VOCs can also increase the risk of sick building syndrome. A person may get sick building syndrome from exposure to VOCs within a building. They can experience an array of symptoms, such as headaches, coughing, nausea, dizziness, fatigue, skin reactions, or irritation to the eyes, nose or throat.
A study from Harvard TH Chan School of Public Health even suggests that exposure to fine particulate matter has a negative impact on cognitive functioning, which potentially reduces productivity in workplaces and academic performance in schools.
And with strict indoor air quality regulations and guidelines in place, it’s imperative that building managers monitor their VOC levels to ensure they are within safe limits.
[edit] How can VOC levels be monitored?
The simplest way to monitor VOCs and improve air quality in buildings is to install smart air quality monitors. These sensors measure air quality data in real time and offer highly accurate information on VOC levels. Linked to a cloud-based management system, data from the sensors can trigger instant alerts if an air quality risk is detected, and automated actions (such as opening windows or turning on air conditioning or ventilation systems) can work to remedy the issue. In addition, big data analytics capabilities can reveal the causes and fluctuations in air pollution over time.
Along with VOC levels, smart air quality sensors can also measure noxious gases, humidity, temperature and particulate matter levels, providing clear and accurate insights into your facility’s indoor air quality.
[edit] How to reduce exposure to VOCs
- Increase building ventilation to reduce the concentration of VOCs in the air around you
- Wearing suitable PPE when you come into direct contact with VOC-emitting materials
- Follow the manufacturer’s safety instructions if you’re using products that involve VOCs
- Pay careful attention to cleaning products and practices
- Install air quality sensors to continuously monitor air quality
With the right technology and the right know-how, building managers can control indoor air quality and mitigate the harmful long-term effect of pollutants, providing a safer, cleaner, healthier—and even a more productive—environment.
This article was written by Matthew Margetts, Director at Smarter Technologies. who has a background working for blue-chip companies for further information visit website directly..
[edit] Related articles on Designing Buildings
- Adhesives.
- Asbestos.
- Binding agent.
- Construction dust.
- Contaminated land.
- Control of Substances Hazardous to Health.
- Deleterious materials.
- Environmental legislation.
- Environmental policy.
- Hazardous substances.
- Inspections focus on occupational lung disease.
- Planning (Hazardous Substances) Act 1990.
- Ozone depleting substances.
- Pollution.
- Structural adhesives.
- Volatile organic compounds VOC
- Workplace exposure limits.
Featured articles and news
Shortlist for the 2025 Roofscape Design Awards
Talent and innovation showcase announcement from the trussed rafter industry.
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.