Vertical structures
Within the context of the built environment , the term ‘structure’ refers to anything that is constructed or built from different interrelated parts with a fixed location on the ground. This includes complete items such as buildings, and parts of items, such as arches. It can also be used to refer to a body of connected parts that is designed to bear loads, but is not intended to be occupied by people. Engineers sometimes refer to these as 'non-building' structures.
Buildings and other structures that are tall and rise upward might be known as vertical structures. This type of construction is becoming more common in urban areas where limited land space is available and there is a growing demand for high-rise buildings. Vertical structures have unique design and engineering requirements that must be met to ensure their stability, safety, and functionality.
A skyscraper is an example of a vertical structure, as is a high-rise building. Typically a high-rise building is considered to be more than 7-10 storeys or 23-30 m.
For more information see: High-rise building.
Types of structure used to construct vertical structures can include:
- Steel frame structures - This type of vertical structure is made of steel beams and columns that are welded or bolted together to form a framework. The steel frame provides stability and support for the building, and is often used for high-rise buildings, skyscrapers, and other commercial buildings.
- Concrete frame structures - This type of vertical structure is made of reinforced concrete, with beams and columns that are generally cast in place to form a solid framework. Concrete frame structures are often used for high-rise buildings, commercial buildings, and residential buildings.
- Hybrid structures - A hybrid structure is a combination of two or more types of vertical structures, such as steel and concrete, to create a framework that provides the best combination of strength, stability, and cost-effectiveness.
Advantages of vertical structures
- Space efficiency - Vertical structures can be efficient as they use of limited land space, providing more floor area per square foot of land than traditional, single-story buildings. This is particularly important in expensive city centre locations, where accommodation and views can be maximised on relatively small sites.
- Cost effective - Vertical structures can be less expensive to build than traditional, single-story buildings, as the cost of the foundation, roof, and so on is shared among multiple floors.
- Energy efficiency - Vertical structures can be more energy-efficient than traditional, single-story buildings, as they can be designed with efficient HVAC systems, and natural light can be maximised through the use of windows and skylights.
Disadvantages of vertical structures
- Cost of construction - The cost of construction can be high, as the building must be designed and engineered to meet strict structural and safety requirements, and the size of lifts, structure, services and so on can reduce the useable floor area.
- Maintenance costs - Vertical structures can be expensive to maintain, as lifts, cladding, HVAC systems, and other building systems must be regularly inspected and maintained to ensure their continued operation.
- Evacuation challenges - In the event of an emergency, evacuating a tall building can be a challenge, requiring well-designed emergency evacuation plans and procedures.
Vertical structures play a crucial role in the construction industry, providing an efficient use of limited land space. However, they also present challenges such as high costs of construction and maintenance, and the need for well-designed emergency evacuation plans. It is essential that these structures be designed and engineered by qualified specialist professionals to ensure their stability, safety, and functionality.
[edit] Related articles on Designing Buildings
Featured articles and news
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Update on the future of Grenfell Tower
Deputy Prime Minister decides for it be carefully taken down to the ground.
Ending decades of frustration, misinformation and distrust.
Essential tools in managing historically significant landscapes.
Classroom electrician courses a 'waste of money'
Say experts from the Electrical Contractors’ Association.
Wellbeing in Buildings TG 10/2025
BSRIA topic guide updates.
With brief background and WELL v2™.
From studies, to books to a new project, with founder Emma Walshaw.
Types of drawings for building design
Still one of the most popular articles the A-Z of drawings.
Who, or What Does the Building Safety Act Apply To?
From compliance to competence in brief.
The remarkable story of a Highland architect.
Commissioning Responsibilities Framework BG 88/2025
BSRIA guidance on establishing clear roles and responsibilities for commissioning tasks.
An architectural movement to love or hate.