Structural stress
Contents |
[edit] Introduction
A material under stress is in a state that has resulted from the application of a force or forces. These forces can also be called stresses. The effect on the material will depend on the type of stress that is applied.
Stress patterns in structural elements can be complex but they usually comprise just three basic types of stress:
- Tensile.
- Compressive.
- Shear.
[edit] Tensile stress
If the stress acting on a structural member tends to make it longer, it is said to be under tensile stress or 'in tension'. The load carried by each unit area of the member’s cross section is the tensile stress in the member. This will make the member a ‘tie’. Steel is ideally suited to resist tensile stresses and is used widely in construction for this purpose, for example to reinforce concrete, or in the form of cables, wires and chains.
For more information see: Tension.
[edit] Compressive stress
If the stress acting on a member tends to result in it shortening (its components are pushed together), it is said to be under compressive stress or 'in compression'. The load per unit area of the member is the compressive stress. This makes that member a strut, or if the member is large, it might be a column, pier or stanchion, depending on its position in a structure. Most materials can carry some compressive stresses – other than cables, wires, chains and membranes.
For more information see: Compression.
[edit] Shear stress
Shear stresses make the particles of a material slide relative to each other and usually result in deformation. An example is a riveted connection which can shear when excessive force is applied. Vertical forces acting on a cantilever can make it shear off at the wall junction. Shear forces produce shape deformation in materials eg, a rectangular element can be contorted into a skewed parallelogram. The shear stresses are those acting on the planes along which the sliding takes place and are measured across a unit area.
For more information see: Shear.
[edit] Units of stress
The N/m2 is the basic SI unit of stress but is very small for most purposes. As a result, MN/m2 may be used, often expressed as N/mm2 in structural codes for steel, concrete and timber.
[edit] Related articles on Designing Buildings
- Bending moment.
- Compression.
- Concept structural design of buildings.
- Bearing capacity.
- Failure of cast iron beams.
- Lateral loads.
- Limit state design.
- Moment.
- Point of contraflexure.
- Racking.
- Rebar.
- Shear.
- Shell roof.
- Structural principles.
- Structural steelwork.
- Strut.
- Tensile strength.
- Tensile structures.
- Tension.
- Ties.
- Types of structural load.
Featured articles and news
Quality Planning for Micro and Small to Medium Sized Enterprises
A CIOB Academy Technical Information sheet.
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.