Prefabricated structural panels
Contents |
[edit] Introduction
Prefabricated structural panels are a form of building product that can be manufactured off-site and assembled on-site, providing an alternative to traditional site-based construction.
They can allow faster construction times, improved quality due to more coordinated supply chain processes, and manufacture in factory environments with controlled conditions. However, detailed design must be provided early in the process as any inaccuracies in or late changes can have a significant impact on cost.
The two main types of structural panels are open and closed:
- Open structural panels are a pre-assembled wall framework which are later fitted with other elements (such as insulation, vapour control layers, external cladding, and so on) on site. While this is quick and flexible compared with traditional construction, it still involves a lot of site work.
- By contrast, closed structural panels are complete pre-assembled wall panels with the other elements included, such as; pre-fitted windows, doors, ducting for internal services, finishes, and so on. Closed panels tend to be larger and heavier, often necessitating a crane for on-site assembly.
The whole life performance of prefabricated panels is dependent on the long-term risk of failure, the use of suitable materials and the integrity and accuracy of connections between panels, floors and roofs. For more information, see Off-site prefabrication of buildings: A guide to connection choices.
[edit] Types of prefabricated panels
Some of the most common types of prefabricated structural panels include:
[edit] Concrete insulated panels
These comprise a robust insulated concrete with a brick outer leaf, and can be manufactured with external windows and doors. They are designed to have a service life of more than 60 years.
[edit] Structural insulated panels (SIPs)
Structural insulated panels (SIPs) are a form of sandwich panel system that incorporates insulation, predominantly used for residential and light commercial construction. They take the form of an insulating foam core sandwiched between two structural facings. SIPs are manufactured under factory-controlled conditions off-site and can be installed quickly once on site. The benefits of using SIPs are that they are high-strength, high-performance, and can be fabricated to fit nearly any building design.
For more information, see Structural insulated panels.
[edit] Timber frame panels
There are several different types of timber frame system, ranging from open ‘stick-built’ systems to closed panels that are pre-fitted with insulation, wiring, plumbing, and so on. Basic timber frame walls comprise studs fixed in place with sheets of plywood or orientated strand board (OSB). When nailed to the studs, the open panel becomes a rigid box into which insulation can be added on site. A waterproof barrier is wrapped around the frame followed by the external wall cladding. Closed panels are delivered to site with these elements pre-installed, minimising the on-site work required.
[edit] Lightweight steel frame panels
These tend to be open panels and overcome the risk of cold bridging by locating insulation on the external side of the frame.
[edit] Insulated concrete formwork (ICF)
ICF, also known as permanently insulated formwork (PIF), is an insulated in situ concrete system based on hollow lightweight block components. The block components, usually made of expanded polystyrene tied together with plastic or steel ties, lock together removing the need for mortar. This creates a formwork system into which concrete is poured to form the structure. While not strictly being an off-site technique, it can be much quicker to install, and provides better insulation, than other construction methods.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.