Piled raft foundation
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics.
Very broadly, foundations can be categorised as shallow foundations or deep foundations:
- Shallow foundations are typically used where the loads imposed by a structure are low relative to the bearing capacity of the surface soils.
- Deep foundations are necessary where the bearing capacity of the surface soils is not adequate to support the loads imposed by a structure and so those loads need to be transferred to deeper layers with higher bearing capacity.
In their normal form, raft foundations (sometimes referred to as mat foundations) are shallow foundations formed by a reinforced concrete slab of uniform thickness (typically 150-300 mm) covering a wide area, often the entire footprint of a building. This 'raft' spreads the load imposed by a number of columns or walls over the area of foundation, and can be considered to ‘float’ on the ground as a raft floats on water.
However, where a conventional raft foundation does not provide adequate support, it can be enhanced by the addition of piles, creating what is known as a piled raft foundation.
Piles are deep foundations. They are formed by long, slender, columnar elements typically made from steel or reinforced concrete. A foundation is described as 'piled' when its depth is more than three times its breadth (Atkinson, 2007). Pile foundations can help transfer loads through weak, compressible strata or water onto stronger, more compact, less compressible and stiffer soil or rock at depth.
The addition of piles to a raft increases the effective size of a foundation and can help resist horizontal loads. This can improve the performance of the foundation in reducing the amount of settlement and differential settlement, as well as improving the ultimate load capacity.
Piled raft foundations are typically used for large structures, and in situations where soil is not suitable to prevent excessive settlement. They are an increasingly popular choice for high-rise buildings.
During the design process, the optimum number and position of piles, as well as their diameter, reinforcement and length, is determined to ensure the stability of the structure while providing an economical solution, with the raft and piles acting together to ensure the required settlement is not exceeded. Typically, the piles provide most of the stiffness while the raft provides additional capacity at the ultimate loading.
If there are one or more ineffective piles, the raft can allow some degree of load redistribution to other piles, reducing the influence of the pile’s weakness on the overall performance of the foundation.
In an Unconnected Piled Raft Foundation (UCPRF), the piles are not directly connected to the raft, but are separated from it be a structural fill 'cushion' (such as a compacted a sand-gravel mixture or compacted soil) which redistributes load between the raft and piles. This can be a more efficient, and so economic solution.
[edit] Related articles on Designing Buildings
- Driven piles.
- Foundations.
- Geothermal pile foundations.
- Micropiles.
- Pad foundation.
- Pile cap.
- Pile foundations.
- Raft foundation.
- Screw pile foundations.
- Secant pile wall.
- Types of raft foundation.
- Types of pile foundation.
[edit] External references
- Numerical analysis of unconnected piled raft with cushion. Alaa Ata, Essam Badrawi, Marwa Nabil. https://doi.org/10.1016/j.asej.2014.11.002
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.