Piled raft foundation
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics.
Very broadly, foundations can be categorised as shallow foundations or deep foundations:
- Shallow foundations are typically used where the loads imposed by a structure are low relative to the bearing capacity of the surface soils.
- Deep foundations are necessary where the bearing capacity of the surface soils is not adequate to support the loads imposed by a structure and so those loads need to be transferred to deeper layers with higher bearing capacity.
In their normal form, raft foundations (sometimes referred to as mat foundations) are shallow foundations formed by a reinforced concrete slab of uniform thickness (typically 150-300 mm) covering a wide area, often the entire footprint of a building. This 'raft' spreads the load imposed by a number of columns or walls over the area of foundation, and can be considered to ‘float’ on the ground as a raft floats on water.
However, where a conventional raft foundation does not provide adequate support, it can be enhanced by the addition of piles, creating what is known as a piled raft foundation.
Piles are deep foundations. They are formed by long, slender, columnar elements typically made from steel or reinforced concrete. A foundation is described as 'piled' when its depth is more than three times its breadth (Atkinson, 2007). Pile foundations can help transfer loads through weak, compressible strata or water onto stronger, more compact, less compressible and stiffer soil or rock at depth.
The addition of piles to a raft increases the effective size of a foundation and can help resist horizontal loads. This can improve the performance of the foundation in reducing the amount of settlement and differential settlement, as well as improving the ultimate load capacity.
Piled raft foundations are typically used for large structures, and in situations where soil is not suitable to prevent excessive settlement. They are an increasingly popular choice for high-rise buildings.
During the design process, the optimum number and position of piles, as well as their diameter, reinforcement and length, is determined to ensure the stability of the structure while providing an economical solution, with the raft and piles acting together to ensure the required settlement is not exceeded. Typically, the piles provide most of the stiffness while the raft provides additional capacity at the ultimate loading.
If there are one or more ineffective piles, the raft can allow some degree of load redistribution to other piles, reducing the influence of the pile’s weakness on the overall performance of the foundation.
In an Unconnected Piled Raft Foundation (UCPRF), the piles are not directly connected to the raft, but are separated from it be a structural fill 'cushion' (such as a compacted a sand-gravel mixture or compacted soil) which redistributes load between the raft and piles. This can be a more efficient, and so economic solution.
[edit] Related articles on Designing Buildings
- Driven piles.
- Foundations.
- Geothermal pile foundations.
- Micropiles.
- Pad foundation.
- Pile cap.
- Pile foundations.
- Raft foundation.
- Screw pile foundations.
- Secant pile wall.
- Types of raft foundation.
- Types of pile foundation.
[edit] External references
- Numerical analysis of unconnected piled raft with cushion. Alaa Ata, Essam Badrawi, Marwa Nabil. https://doi.org/10.1016/j.asej.2014.11.002
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.