Ground anchor
Contents |
[edit] Introduction
Ground anchors, otherwise known as an earth, percussion driven or mechanical anchors, are versatile devices used to hold, restrain and support building, civil engineering and other structures, either permanently or temporarily.
They come in a wide range of sizes and capacities, up to 70 m in length, with a capacity of more than 3,000 kN. They are lightweight, corrosion-resistant anchors that can be installed from ground level, either by hand or using portable equipment, depending on size and ground conditions. When loaded, they exert pressure on a cone of the ground that surrounds their length, providing very good resistance to movement.
As they create minimal soil disturbance during installation and can be stressed to an exact holding capacity, they offer a popular technique for anchoring a wide range of structures into place:
- Agricultural fixings.
- Bridges.
- Buoyancy control.
- Drainage.
- Erosion control measures.
- Foundations.
- Gabion support.
- Geomesh or geogrids.
- Guyed structures such as radio masts.
- Landfill capping.
- Marine applications such as floating docks and pipelines.
- Pipelines.
- Portable buildings/structures.
- Retaining walls.
- Rock retention.
- Scaffolding.
- Security fixings.
- Sheet piling.
- Slope stabilization measures.
- Temporary works.
- Tie backs for watercourse walls.
- Tunnel linings.
- Utility poles.
[edit] Design and installation
The life expectancy of an anchor is dependent upon the corrosivity of the soil in which it is placed and the materials used. The main component of the anchor, sometimes describes as a ‘tendon’ can be made from a wide range of materials:
- Steel bar or wire strand.
- GRP.
- Alumimium alloy - 30 years+.
- Hard anodised aluminium alloy - 40 years+.
Permanent anchors may include additional corrosion resistant protection. Temporary anchors may be removed after use.
The method of installation will vary according to the situation; drive rods, spiral sockets and impact hammers are commonly used to push or screw the anchor into the ground, as well as simple hand tools. Depending on the ground conditions, it may be necessary to bore a hole first for the installation of the anchor, and sometimes it may be necessary to use a casing to support the hole before the anchor is installed.
The hole may be pre-grouted hole or post-grouted after installation. Typically, the anchor is then tensioned and locked off against a head plate.
Care must be taken to ensure that no services or other obstructions in the ground are damaged during installation.
The ultimate performance of the anchor is dependent upon:
- The shear angle of the soil.
- The size of the anchor.
- The depth of the installation.
- The load applied to the anchor.
Anchors can perform very well in granular soils as well as stiff, cohesive soils. Soft alluvial clays which are weaker may require a larger anchor size and a deeper driven depth.
The pullout capability of anchors can be tested in similar ground conditions before installation.
[edit] Benefits
There are several benefits to using ground anchors. These include:
- They are lightweight and corrosion-resistant which makes them suitable for a range of design life requirements and soil conditions.
- They are quick and easy to install.
- Installation allows for minimal disturbance, making them suited to complex and sensitive sites.
- They can be installed with minimum disruption to surface finishes.
- They can achieve a holding capacity of up to 3,000 kN.
- They have low environmental impact.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- Bored piles.
- Building foundations.
- Compensated foundation.
- Continuous flight auger piles.
- Diaphragm wall.
- Driven piles.
- Footings.
- Geothermal pile foundations.
- Ground heave.
- Groundworks.
- Micropiles.
- Pad foundations.
- Pile foundations.
- Prestressed concrete.
- Raft foundation.
- Retaining walls.
- Screw pile foundations.
- Shoring.
- Socket piles.
- Soil nailing.
- Temporary works.
- Tension cable and rod connectors.
- Tension piles.
- Types of fixings.
- Types of nails.
- Underpinning.
[edit] External references
- Platipus - Anchors
- BS 8081:2015 Code of practice for grouted anchors
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.