Interstitial condensation
Air will generally include moisture in the form of water vapour.
When air cools, it is less able to “hold” moisture. When its relative humidity reaches 100%, the air is saturated, and this is described as its ‘dew point’ temperature, or ‘saturation temperature’. If the air continues to cool, moisture will begin to condense.
Where this condensate forms on a surface, it can be described as ‘dew’, hence the term ‘dew point’. This is common for example when moisture condenses on cold windows.
When the dew point temperature is reached within the fabric of a building's construction, either on the surfaces of components that make up the fabric, or sometimes within the components themselves, this is known as ‘interstitial condensation’.
Interstitial condensation commonly occurs when moist air permeates through elements of the building fabric, across which there is a temperature difference, typically, but not always, when warm, moist, internal air moves towards the cooler outer parts of external walls or roofs, driven by a pressure difference. If the temperature drops sufficiently, the dew point may be reached within the fabric and condensation will occur.
If this happens, for example, in the outer leaf of a brick cavity wall, it may cause no more problems than rain does when it wets external walls, simply evaporating over time. However, if it occurs in the inner components, or in insulation it can cause problems:
- Mould growth, which is a cause of respiratory allergies.
- Mildew.
- Staining.
- Corrosion and decay of the building fabric.
- Frost damage.
- Poor performance of insulation and reduced thermal resistance of other elements of the building fabric. This in turn can reduce the temperature of the building fabric, exacerbating the condensation problem.
- Migration of salts.
- Liberation of chemicals.
- Damage to equipment.
- Electrical failure.
Interstitial condensation tends to occur on the warm side of vapour resistant layers.
To prevent this, buildings need to be designed so that the temperature profile across the construction remains higher than the dew point temperature:
- Vapour control layers (VCL) can be positioned on the warm side of insulation, however, these layers must be carefully sealed and penetrations avoided.
- Materials with low vapour resistance can be positioned on the cooler side of the construction (although this can be problematic where for example the external cladding is impermeable).
- Ventilated cavities can be provided near the cooler side of the construction.
- Cold bridges can be eliminated.
- The moisture in the building itself can be reduced by replacing flue-less gas or oil heaters, improving ventilation and so on. Ventilation can be humidity activated.
- The internal temperature of the building can be increased. Heating can be thermostatically controlled.
Dew point calculators are available that can predict the likelihood of interstitial condensation in different constructions and for different environmental conditions.
Condensation in buildings is regulated by Approved Document C (Site preparation and resistance to contaminates and moisture) and Approved Document F (Ventilation) and further guidance is available in BS 5250 Code of practice for the control of condensation in buildings. Approved document C, 2004 edition incorporating 2010 and 2013 amendments defines interstitial condensation as: ‘Deposition of liquid water from a vapour, occurring within or between the layers of the building envelope.’
[edit] Related articles on Designing Buildings
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.