Infill panel walls
Contents |
[edit] Introduction
Infill panel walls are a form of cladding built between the structural members of a building. The structural frame provides support for the cladding system, and the cladding provides separation of the internal and external environments. Infill walling is different to other forms of cladding panel in that it is fixed between framing members rather than being attached to the outside of the frame.
Infill panel walls are not considered to be load bearing, although they are required to resist wind loads applied to the façade, as well as supporting their own weight. Other functional requirements for infill panel walls include:
- They are self-supporting between structural framing members.
- They provide weather-resistance.
- They provide thermal and sound insulation.
- The provide fire resistance.
- They provide sufficient openings for natural ventilation and glazing.
- They can accommodate differential movements between themselves and the frame.
[edit] Types of infill panel walls
Traditionally, infill panel walls used brick/masonry or timber; however, these are more time consuming than modern alternatives and have been largely replaced by lightweight steel C-sections that span between floors and around openings.
[edit] Brick infill panels
These can be constructed from clay bricks or concrete blocks, in a solid or cavity form. The same principles of solid and cavity wall construction apply to infill panel walls. They can be tied to columns using wall ties cast at 300 mm centres, or located in anchor slots.
[edit] Concrete infill panels
These are usually large precast concrete panels that are the height of one storey and of a width dictated by the spacing of the frame. They can be either top-hung or bottom-supported. Panels that are integral may be clad in other materials, most typically stone.
The maximum panel size is generally restricted by the transport considerations and crane lifting capacity.
[edit] Timber infill panels
Timber sections are cut to length – typically 90 and 140 mm depth to span 2.4 - 3.6 m between floors – and placed at 400 or 600 mm spacings.
The disadvantage of using timber in place of steel is that it has less strength and cannot be used in tall sections or walls with large openings for doors or windows.
[edit] Lightweight steel infill panels
Multi-storey framed construction often uses lightweight steel for infill panel walls that support the external cladding. The panels are fixed between the structural horizontal and vertical members of the frame, and can incorporate architectural features such as large windows, parapets, and so on. The panels are lightweight, and are quick and easy to instal.
The size and thickness of the steel sections can be varied according to the façade wall height and windloads. Typically, C-sections and U-sections of 75-100 mm depth are cold roll-formed from galvanized steel strip of 1.2-3.2 mm thickness. Pairs of C-sections may be used next to large openings, and are typically placed at 400 or 600 mm spacings.
[edit] Related articles on Designing Buildings
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.