Heat gain
![]() |
[edit] Introduction
Heat gain is the term given to a temperature rise within a space due to heat from the sun (solar radiation), heat from surfaces (long wave infrared radiation), heat originating from other sources within the space (such as heating appliances, ovens, people, mechanical systems, lights and computers) and so on. It is the heat that is gained from such sources that changes the prevailing temperature within the space.
Heat gain can be positive, for example providing 'free' heating to spaces on sunny but cold days, or it can be negative, overheating spaces in the summer so that they are uncomfortable to occupy.
[edit] Contributory factors
A south-facing conservatory, for instance, in an uninhabited house may see considerable solar heat gains on a daily basis, particularly in summer, but no heat gains from heating appliances and people. In contrast, a north-facing room in winter may receive very little solar heat gains but be warmed by considerable heat from central heating, lights and people. Generally, excessive heat gains will create overheating which may have to be tempered by opening a door or window or activating the cooling systems.
In calculating the heat gain within a property, for instance when sizing an air conditioning system, engineers must assess the orientation of the building, the nature of its construction, size and location of windows, type of occupation and so on.
Various features can be used to limit solar heat gain, including:
- Shading systems.
- Limiting the number or area of openings.
- Orientating openings away from the sun path.
- Reducing solar transmittance through openings, for example, by reflective glazing.
- Ventilation.
- Insulating the building envelope to prevent the transmission of indirect solar gains (ie through external walls).
- Reducing the solar absorptance of the building envelope (eg white-coloured surfaces can reduce heat transfer into buildings).
- Reducing the urban heat-island effect.
- Planting to provide shading and to reduce the solar absorption of roofs.
In an office environment, calculating the mechanical cooling required will have to consider the plethora of plug-in devices such as computers, monitors, photocopiers, projectors, electric kettles and microwaves and so on. The heat load from this sort of equipment (‘plug loads’) has been estimated by ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) as constituting between 20-50% of the energy used by a building.
The opposite of heat gain is heat loss, which is the heat that is lost through the fabric of the building when the external air temperature is lower than inside the building. The heat is lost through the external walls, floors and roof, and through inefficient doors and windows and other openings. A similar process may be seen in adjacent apartments, where heat transfer will occur in winter through the party walls from one that is heated to an adjacent apartment that has been left unheated.
Part L of the building regulations, 'Conservation of fuel and power', sets liminting parameters on the construction of buildings, their airtightness, the amount of glazing, insulation, power consumption and so on to limit unwanted heat gains.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.