Heat loss
Heat is the energy that is transferred between different systems as a result of thermodynamic interactions.
Heat loss is a measure of negative heat transfer through a building’s fabric from the inside to the outside. This can be due to either convection, conduction, radiation, mass transfer, or a combination. The colder the outside temperature, the warmer the inside, and the worse the thermal insulation of the building fabric, the greater the heat loss will be.
Heat loss is typically measured in either kilowatts (kW) or British Thermal Units (BTUs).
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a building's fabric are at insulating against heat loss (or heat gain). The lower the U-value of an element of a building's fabric, the more slowly heat is able to transmit through it, and so the better it performs as an insulator. Very broadly, the better (i.e. lower) the U-value of a building's fabric, the less energy is required to maintain comfortable conditions inside the building.
The building regulations require that reasonable provision be made to limit heat gains and losses through the fabric of new buildings and works to existing buildings. The approved documents to the buildings regulations set out the limiting standards for the properties of the fabric elements of the building, described in terms of maximum U-values. For more information see: Limiting fabric standards.
Typically, the older a building is, the more it will be susceptible to heat loss. This can be due to a combination of poor (or no) insulation, thermal bridging across the building envelope, single glazing, poor airtightness and so on,
Levels of heat loss will vary depending on the type of building; for example, a terraced house will lose a higher proportion of heat through the floor and roof rather than walls, whilst nearly all the heat loss from a flat will be through the outside walls.
The following estimates indicate the proportionate heat loss from a badly insulated house:
- Up to 25% through the roof.
- Up to 35% through outside walls.
- Up to 25% through doors and windows.
- Up to 15% through ground floors.
(Ref. www.ired.co.uk)
Some of the techniques that can be used to combat heat loss in existing buildings include:
- Draught-proofing.
- Roof insulation.
- Double-glazing.
- Floor insulation.
- Solid wall insulation.
[edit] Related articles on Designing Buildings
- Building performance.
- Emissivity.
- Heat gain.
- Heat pumps and heat waves: How overheating complicates ending gas in the UK.
- Heat transfer.
- Mean radiant temperature.
- Passive building design.
- The cavity wall real performance question.
- Thermal insulation for buildings.
- Thermal mass.
- Thermal resistance.
- U value.
- Vapour barrier.
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.