Heat pumps and heat waves: How overheating complicates ending gas in the UK
Contents |
[edit] Introduction
We have entered what many are calling the decisive decade on climate action. Among the most critical decisions that the UK faces this decade is how it will eliminate carbon emissions from heat. Heat accounts for over a third of our emissions, and over 80% of our buildings are linked to the gas grid. There is no pathway to net zero that doesn’t include ending the use of gas as we know it in the UK.
Given the size of the UK gas grid, no single technology or energy vector can replace it. We will need a combination of clean electricity and carbon-free gas such as hydrogen or biogas, delivered by a range of enabling technologies such as heat pumps and heat networks. And of course an extremely ambitious retrofit agenda that reduces the demand for heat in the first place.
The UK is investing widely in low carbon heating innovation. That innovation is essential, but is also unlikely to include any blue-sky breakthroughs that aren’t currently on the table. In other words, the menu of low carbon heating technology options is set, and this decisive decade will be about deciding what goes best where, and how to ensure a just and equitable heat transition.
[edit] Low carbon heating options
Of all the low carbon heating options available, low carbon heat pumps are the most efficient and scalable option that is market ready and can respond to the urgency of climate change this decade. The UK has set a laudable target of installing 600,000 heat pumps per year by 2028. Many have criticised this figure as unrealistic, but I believe that the target is highly achievable and represents a pace that is in line with past transitions such as ‘the Big Switch’ that put us on the gas grid in the first place.
This race to replace gas in the UK has been widely discussed. As have the many barriers that face heat pump deployment in the UK. What I’ve heard discussed far less are the links between heating in the winter and overheating in the summer. Over the next decade, the end of gas will present both a threat and an opportunity to improve both the winter and summer performance of our building stock.
The threat of climate change is clear. The end of gas increases this threat because gas has allowed the UK to obscure poor building performance, and poor building knowledge for so long. Cheap gas has enabled a ‘set it and forget it’ approach to many building systems and allowed us to maintain reasonable standards of comfort in most buildings despite very poor fabric performance. The irony is that this poor winter performance actually helps reduce the risk of overheating in the summer, as the leaky and poorly insulated buildings can more easily shed excess heat. It has been widely reported that many newer, better insulated buildings actually face an increased risk of summer overheating.
Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss. There are many that argue heat pumps in fact require extensive fabric retrofit in order to function in most UK buildings. This is highly debatable and will be explored in detail in follow-up writings. Regardless, demand reduction and a fabric first approach is a good idea for its own sake.
But reducing the heat loss in winter will likely trap heat in the summer, presenting a conflict. The UK currently experiences over 20,000 excess winter cold deaths and around 2,000 heat related deaths in summer. It was previously thought that the increased temperatures from climate change would decrease winter cold deaths, but more recent work has shown that due to the increases in extreme weather events at both ends of the spectrum, it is far more likely that winter cold deaths will remain at similar levels, and summer heat deaths will increase dramatically under climate change.
We must use the transition from gas to low carbon heating as an opportunity to better understand our buildings. Many of 600,000 heat pumps we install by 2028 will be in new build, but up to half will need to be from existing homes.
Retrofitting a heat pump is also the time to think about not only how to improve energy efficiency for the winter but how to reduce summer overheating as well. Despite much effort towards a whole house approach to retrofit, most work remains quite siloed. Energy efficiency and heating installations are largely in separate supply chains, and the building physics knowledge to carry out an overheating risk assessment is even less likely to sit with the same project team. Overheating is also very poorly captured by the building regulations and planning process.
[edit] A holistic approach
The last few years has seen a growing awareness of overheating risk and an emergence of increasingly easy to use assessment tools. A very small fraction of UK homes have comfort cooling. Retrofitting a comfort cooling solution typically requires costly and complex changes to distribution systems. However, there are a range of low cost options, including using local extract fans to create interzonal air movement, or using night purges and thermal mass. Blinds are also incredibly useful, but often misused in summer, and can also help reduce heat loss in winter. There are also ways to use local microclimate features such as shaded areas or the North side of the building to bring in slightly cooler air from outside and reduce peak temperatures.
Improving the air tightness and fabric performance of our buildings to address heating in the winter will change how we implement these solutions for the summer. They require not only careful thought at the design stage, but also strong communication to help end users operate them properly. Simply opening a window is unlikely to help if the outside air is warmer than inside.
A significant problem is that there are insufficient drivers to force this type of holistic approach to design, performance and communication. It is so often said that we need stronger policies in the area of heat and retrofit, and this is no doubt true. But while we await these policies it is incumbent upon each of us in this sector to share and collaborate as widely as possible and use whatever influence we have over a given project to encourage a fair and forward looking solution.
In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail. Climate change is the catalyst for an untold level of change in our lives that we are going to start to truly experience in the coming decade. Heating and overheating are coupled issues that must be solved together. We must use the end of gas as an opportunity to understand our buildings better, and implement solutions to climate change that work across seasons, or we risk trading one problem for another.
This article originally appeared on the Blog portion of the BSRIA website. It was published on 9 February 2022 aswell as December 2023, and written by Dr Aaron Gillich, Associate Professor and Director of the BSRIA LSBU Net Zero Building Centre.
--BSRIA
[edit] Related articles on Designing Buildings
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.