Thermal admittance of building materials
Thermal admittance (Y) is a measure a material's ability to absorb heat from, and release it to, a space over time. This can be used as an indicator of the thermal storage capacity (thermal mass) of a material, absorbing heat from and releasing it to a space through cyclical temperature variations, thus evening out temperature variations and so reducing the demand on building services systems.
Thermal admittance is expressed in W/(m^2K), where the higher the admittance value, the higher the thermal storage capacity.
Thermal admittance is calculated as the heat transfer (in watts W) / area (m^2) x the temperature difference between the surface of the material and the air.
Typical admittance values based on a 24-hour cycle might range from 1.0 for a timber frame wall with brick outer leaf, to 2.65 for a cavity wall with 100 mm dense aggregate block (ref. The Concrete Centre).
The admittance time lead, ω (expressed in hours), is a measure of the time delay between the peak heat flow between the material surface and the space and the time of the peak temperature in the space.
Admittance is dependant primarily on a material's density, thermal capacity, thermal conductivity, surface resistance and the time cycle of the temperature variation.
As the thickness of a material increases, so the admittance approaches a constant value. It is generally considered that in the UK, with a 24-hour thermal cycle, heat energy can only penetrate up to 100 mm into materials such as concrete and masonry.
[edit] Related articles on Designing Buildings Wiki
[edit] External references.
- ISO 13786:2007. Thermal performance of building components -- Dynamic thermal characteristics -- Calculation methods.
- The Concrete Centre: Thermal Mass Explained (2012 update).
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.