Future proofing construction
Contents |
[edit] What is future proofing?
Future proofing is a broad term that can encompass not only buildings and infrastructure but also communities, cities, countries or the whole planet. It has adopted different meanings within these different contexts, ranging from resilience to climate change to demographic change and resource security.
It is sometimes confused with sustainability issues, life-cycle costing and even well being. Whilst these may be relevant areas of consideration, here they are part of a more specific assessment process.
In relation to buildings, future proofing is an assessment process aimed at maximising whole-live value in the face of unpredictable, ongoing change.
[edit] Historic precedent
Future proofing is not a new phenomena. The anthropologist Gregory Bateson is credited with telling the following story about planning for the future.
New College, Oxford, founded in 1379 has a large dining hall like other Oxford colleges. This is constructed using large oak beams. In 1859 it became clear that the beams needed to be replaced – a difficult and expensive undertaking given the size of the timbers required. It was discovered however that replacement oaks had been planted in the college estates, and these were cut for use in the hall. It has been suggested that these trees were expressly planted for the hall – in effect, the hall had been future proofed against the possibility that the resources necessary to repair it would become (or remain) difficult to obtain.
[edit] Design assessment
Future proofing a building requires careful consideration of likely future scenarios:
- What changes are might happen in the life of the building?
- How likely are those changes?
- How serious would the impact of such a change be?
- What is the cost of future proofing against that change?
This assessment process should be a continuous exercise that involves the client, designers, suppliers contractors, end users, and is similar to the way that risk assessments are carried out.
Assessment is a very complex process, and there is a danger that a building will adopt future-proofing solutions that might fail:
- The scenario might not happen.
- The solution adopted to cope with the scenario might fail or might not be implemented.
- An unforeseen scenario might render the solution ineffective.
This means that whilst literature often suggests that future-proofing a building is always beneficial, and is inherently ‘environmental’, in fact, future proofing against the wrong scenarios can be a significant waste of resources.
[edit] Future proofing consideration
Some issues that might be considered in assessing the most appropriate strategy for future proofing a building are presented below. It should be noted that many of these go well beyond simple consideration of the fabric of the building to include long-term market assessment and business planning:
[edit] Flexibility
The flexibility of a building or elements of its design can allow it to continue to be used efficiently despite changes in operational requirements, whereas an inflexible building might become unusable.
Flexibility might include active flexibility, such as moveable partitions, but can also include the provision of features that are inherently flexible, such as multi-use spaces, open plan as opposed to cellular offices, large floor-to-ceiling heights and high-capacity service voids. It might also include broader characteristics such as the room's ability to expand or to use a range of different energy sources.
However, there are many buildings throughout the world with very expensive designed-in flexibility that has never been used. The requirement for change may never emerge, building occupants can be intransigent and avoid change, or occupants may simply be unaware of the possibility to change their building.
An example of poor adaptability is many UK hospitals with spaces for equipment and plant that has since downsized, and been made portable. The government minister, Francis Maude, said hospital buildings could be built “as sheds around people and equipment that can be reconfigured very quickly in 10 or 20 years’ time when needs change. We need to build in flexibility. We need to have a shell that’s capable of being reconfigured. At the moment, we’re building in obsolescence.”
[edit] Resource use
The cost of energy is likely to continue to rise, and energy security is not certain. This might put a development at risk. Reducing future energy consumption or finding alternative sources of energy can therefore help to future proof a building.
This also applies to other resources that might be required such as water or raw materials for manufacturing.
[edit] Technology
Specialist consultants and suppliers often recommend the very latest, most flexible technology and the provision of building infrastructure to accommodate likely future advances in technology.
In some circumstances, this may be sensible, but for example, flood wiring a building to allow for future flexibility may become unnecessary if wireless and mobile technology advances. Similarly, whilst long-life technological solutions might appear in the first assessment to give the most future proof solution, in practice, rapid technological advances might render a solution inefficient or even redundant within its useable life, and planning for regular replacement can be more efficient.
[edit] Resilience to climate change
What would happen if weather patterns were to change? Will a building still function satisfactorily if temperatures rise, or rainfall increases, or the climate becomes more extreme? Is a proposed building in an area that might be at risk from flooding in the future?
Can the building be adapted, or should resilience be built in?
[edit] Legislation
There have been a great many legislative changes in recent years with much more stringent regulations being introduced and a continually changing policy landscape. Whilst on the whole, these tend to impact on new buildings, retrospective changes can affect existing buildings.
For example, the requirement to make existing buildings accessible, or regulations requiring that when an existing building is changed, it must must be adapted to comply with newer standards (for example the application of Part L of the building regulations when an existing building is modified). This can make inflexible buildings unviable.
[edit] After use
Businesses may need to consider what they would do with their building if it became inappropriate for their requirements. Will the building or any of its components have resale value? Can it be adapted to other uses? Is it designed for deconstruction? Does it have inherent disposal costs?
Under certain circumstances, it may be more appropriate for a client to use a short-life, temporary or re-useable building than one that is long life.
[edit] Social attitudes
A building that appears fashionable today, might become unfashionable in the future. This applies particularly to rented accommodation, where if a building does not have a ‘timeless’ style, or is unable to adapt, it may become unviable.
In addition, building users tolerance can also change over time. Issues such as privacy, noise pollution, light pollution or air quality that are now considered acceptable, might in the future be perceived as a problem.
[edit] Wider considerations
An analysis of the predicted development of a geographic area or an industry is likely to impact on the selection of a site for a particular use. For example, will the business be able to attract and retain appropriately qualified staff? Will the business have access to universities? What is the quality of local area, the standard of local schools, the cost of local housing, the quality of the local transport infrastructure?
Will the building be able to respond to the needs of an ageing society, or a move to home working?
More people are moving away from the country to cities. This increased urbanisation means infrastructure requirements are changing. Will the local infrastructure be able to cope?
On a fundamental level, our numbers on the planet have more than doubled since 1950. There are now estimated to be seven billion people living on the planet. Although forecasters predict the increase in numbers will tail off by 2050, the likely impact of such high numbers on the planet may need to be considered.
NB for more information see Changing Lifestyles.
Alex Gordon RIBA, proposed 3L principle: Long Life, Loose Fit and Low Energy buildings as early as the 1970's in his report on the subject. loose fit describes the buildings as being a loose fit for their purpose so easily adapted for future uses.
[edit] Principles of Future-Proofing
The following principles were developed by Brian Rich, AIA, LEED BD+C, CCCA, PMP, sUAS of Richaven Architecture & Preservation as they relate to buildings and, specifically, historic buildings:
- Prevent decay: Promote durable building materials and methods of construction that prevent premature deterioration of the built environment rather than accelerate deterioration.Interventions should use building materials of equal or greater durability than existing building fabric or design for disassembly and replacement.
- Stimulate flexibility and adaptability: Flexibility and adaptability of the built environment and our attitudes towards it are essential to retention of the built environment in a disposable society.
- Extend service life: Through regular inspections and maintenance so it may continue to contribute to the economy, culture, and sustainable society.
- Fortify: Build engineered resilience by fortifying the built environment against climate change, extreme weather, natural hazards, and shortages of materials and energy.
- Increase redundancy: Redundant systems provide backup in the event that a primary system fails and allow a building to continue to function.
- Reduce obsolescence: Do not accept planned obsolescence. Take a proactive approach to preventing physical, functional, aesthetic, and sustainable obsolescence.
- Plan ahead: Prevent demolition of existing building fabric by using optimum materials, construction phasing, and scalability through long range planning.
- Diversify: Allow for multiple stable states, like ecologically resilient systems. Include different sources, uses, capabilities, and economic models rather than one dominant trait.
- Be local and healthy: Incorporate non-toxic, renewable, local materials, parts, and labour to ensure materials and manufacturing capabilities will be readily available in the future for efficient repairs.
- Consider life cycle benefits: Consider the long-term life cycle benefits of interventions as opposed to demolition and disposal of existing historic building fabric.
- Take advantage of cultural heritage policy documents: Typically applied during the design phases of a project, cultural heritage policy documents provide excellent guidance for the long-term retention of an historic building.
- Promote understanding: Renovation, rehabilitation and other types of alterations to existing buildings should allow for understanding of their place in the built heritage through minimal interventions that remain distinguishable from the original structure.Construction should respect historic fabric and seek to protect it.
- Use it: "A building lived in, is a building loved, is a building lasting" (Brian Rich, 2014). Buildings that are not used are neglected and fall into further and further deteriorated states, eventually resulting in the loss of the building.
[edit] Related articles on Designing Buildings
- Adaptability.
- Alternative futures for heritage.
- Business resilience.
- Changing lifestyles.
- Buildings that help rebuild lives and communities.
- Business plan.
- Cost plans.
- Design flexibility.
- Designing resilient cities: a guide to good practice (EP 103).
- Earthquake Design Practice for Buildings.
- Environmental plan.
- Environmental policy.
- Flood level.
- Hurricane design considerations.
- Horizon scanning.
- Interferometric synthetic aperture radar InSAR.
- Managing and responding to disaster.
- Masterplanning.
- Resilience.
- Risk assessment.
- Risk management.
- Shortages of cable management products.
- Smart cities.
- Structure relocation.
- Sustainability.
- Two steps towards a more resilient world.
- Whole life costs.
[edit] External references
- Bill Gething: Design for Future Climate: opportunities for adaptation in the built environment.
- UK Climate Change Risk Assessment (CCRA).
- Department for Environment, Food and Rural Affairs (Defra) National Adaptation Programme (NAP).
- The Environment Agency: Climate Ready support service.
- 9th Brunel International Lecture by Jo da Silva, 2012: Shifting agendas: response to resilience - the role of the engineer in disaster risk reduction.
- Building - Francis Maude "Hospitals should be sheds"
- http://ojs.ecsdev.org/index.php/ejsd/article/viewFile/186/178 - Alex Gordon 3L quote
- http://www.atlasobscura.com/places/oak-beams-new-college-oxford
- http://www.principlesoffutureproofing.com
Featured articles and news
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Comments
Achieving an electrical contractor license reflects your dedication to excellence and professional growth.