Earthquake resistant building materials
Rescue teams in Natori, Japan search for missing people in the aftermath of the 2011 quake. |
Contents |
[edit] Introduction
Seismic events known as earthquakes occur when the earth 'shakes' due to the release of energy below its surface. This energy can be caused by natural events (such as volcanoes or landslides) or occasionally by human activity (such as mine blasts or underground nuclear experiments) and can cause significant damage to structures in their path.
Several building materials have been developed to improve the resilience of structures to earthquakes.
[edit] Fibre reinforced paint
In 2014, a team of researchers at The University of Tokyo introduced glass-fibre reinforced paint referred to as SG2000. Headed up by Kenjiro Yamamoto, the team began experimenting with techniques that could be used to retrofit masonry structures in areas where earthquakes were likely to occur.
Their research resulted in the development of SG2000 - a coating made from standard acrylic-silicone paint resin and glass fibres. During laboratory tests, the coating, which is simple to apply to existing structures, was able to help keep bricks connected after mortar joints - which had been covered with the coating - were broken (thus reducing the likelihood of injury caused by falling bricks). It also showed that the coating - which did not increase the test building’s stiffness - allowed masonry structures to bend rather than break or collapse.
[edit] Earthquake resistant concrete
In October 2017, the University of British Columbia introduced a seismic-resistant, fibre-reinforced concrete. Referred to as eco-friendly ductile cementitious composite (EDCC), the material is engineered at the molecular scale to be strong, malleable, and ductile, similar to steel—capable of dramatically enhancing the earthquake resistance of a seismically vulnerable structure when applied as a thin coating on the surfaces.
EDCC combines cement with polymer-based fibres, fly ash and other industrial additives, making it highly resilient, according to UBC civil engineering professor Nemy Banthia, who supervised the work.
To test its effectiveness, the product was sprayed on walls to a thickness of 10mm, which was deemed sufficient by the research team. The test walls were then subjected to high levels of vibration (equivalent to the magnitude 9.0–9.1 earthquake that struck Tohoku, Japan in 2011) and other types and intensities of earthquake. After passing all tests, EDCC was given its first real-life application in the seismic retrofit of a Vancouver elementary school.
The research was funded by the UBC-hosted Canada-India Research Centre of Excellence IC-IMPACTS, which promotes research collaboration between Canada and India. IC-IMPACTS has made EDCC available to retrofit a school in Roorkee in Uttarakhand, a highly seismic area in northern India.
Other EDCC applications include resilient homes, pipelines, pavements, offshore platforms, blast-resistant structures and industrial floors.
[edit] Related articles on Designing Buildings Wiki
- Concrete fibre.
- Cool paint.
- Earthquakes and the seismic strengthening of churches.
- Earthquake Design Practice for Buildings.
- Fly ash.
- Glass fibre reinforced concrete.
- Managing and responding to disaster.
- Paints and coatings.
- Ultra high performance fibre concrete.
[edit] External resources
- Kenjiro Yamamoto, Muneyoshi Numada and Kimiro Meguro, Shake table tests on one-quarter scaled models of masonry houses retrofitted with fiber reinforced paint.
- University of British Columbia, UBC researchers develop earthquake-resistant concrete.
Featured articles and news
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.