Fly ash
![]() |
Contents |
[edit] Introduction
Fly ash is a general term given to the lighter fine ash that is produced during the combustion of any material in a furnace or incinerator, it can be around 5-10% of the mass of the material being burnt. The density of this lighter fly ash called fly ash because it is kept in suspension during combustion and normally accumulates on the sides of chimney flues. The other ash that is produced is known as the main ash or bottom ash, this is a heavier ash that falls to the base of the incinerator. Fly ash is also commonly associated more directly with the combustion of coal as described here.
Fly ash (or flue ash or pulverised flue ash PFA) is a by-product of the coal combustion process, particularly in electricity generating power stations. It is formed when fine particulates of burned coal fuse in suspension and are driven out with flue gases. As they are driven out of the combustion chamber, the fused material cools and forms glassy particles called fly ash. Modern coal-fired power plants use particle filtration equipment to catch the fly ash before it reaches the chimneys.
(NB: Coal ash is the term given to the mixture of fly ash (which rises) and the bottom ash which falls to the bottom of the boiler).
[edit] Composition
The chemical components of fly ash will depend on the type of coal being burnt and its origin. Typically, if the coal derives from coal-bearing rock strata, the fly ash will include substantial quantities of silicon dioxide (SiO2), aluminium oxide (Al2O3) and calcium oxide (CaO). Other constituents may be present as trace quantities and may include (alphabetical order) arsenic, beryllium, boron, lead, mercury, thallium and vanadium – to name a few. In appearance similar to Portland cement, fly ash is a fine powder with particles that are largely spherical-shaped, ranging in size from 0.5µm to 300 µm.
Before the advent of modern air pollution control standards, much of the smog and air pollution in early to mid-20th century European cities was partly the result of releasing unfiltered fly ash directly into the atmosphere.
Fortunately, environmental and health legislation has reduced the emissions to less than 1% of the fly ash produced. Modern filtration processes may use mechanical collectors (such as dust cyclones that rely on vortex separation); electrostatic precipitators or filter bags. This has resulted in huge quantities of fly ash that must be disposed of: today, around 65% of the global fly ash production is sent to landfill. This has increased landfill costs globally which has led to more efforts to find recycling uses.
[edit] Classes of fly ash
There are two classes of fly ash:
- Class F (high calcium) largely produced by burning bituminous or anthracite coals. Pozzolanic in nature.
- Class C (low calcium) largely from burning sub-bituminous or lignite coal.
[edit] Applications
One of the largest consumers of fly ash is the production of concrete, where it is used as a substitute for Portland cement. Other uses include as a constituent in:
- Concrete block paving and other concrete products, such as pipes.
- Clay brick production.
- Blended cements.
- Mineral filler for asphalt roads.
- Soil stabilisation.
- Structural fill.
- Waste stabilisation and treatment.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Heritage staff wellbeing at work survey.
A five minute introduction.
50th Golden anniversary ECA Edmundson apprentice award
Showcasing the very best electrotechnical and engineering services for half a century.
Welsh government consults on HRBs and reg changes
Seeking feedback on a new regulatory regime and a broad range of issues.
CIOB Client Guide (2nd edition) March 2025
Free download covering statutory dutyholder roles under the Building Safety Act and much more.
AI and automation in 3D modelling and spatial design
Can almost half of design development tasks be automated?
Minister quizzed, as responsibility transfers to MHCLG and BSR publishes new building control guidance.
UK environmental regulations reform 2025
Amid wider new approaches to ensure regulators and regulation support growth.
The maintenance challenge of tenements.
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.
Shortlist for the 2025 Roofscape Design Awards
Talent and innovation showcase announcement from the trussed rafter industry.