Crane supports
Tower cranes are usually supplied on a hire basis, with the client being responsible for the design and construction of the base upon which the crane will be erected. Details of loading are provided by the crane supplier and the base is most commonly designed as a temporary structure, although sometimes a crane base will be incorporated into the permanent structure to save on cost and time.
Loads are given in two forms, ‘in service’ loads, where the crane is functioning and wind speeds are restricted (ie cranes will not operate at high wind speeds), and ‘out of service’ loads, where the crane is not being used but maximum wind speeds may occur.
The location for a crane should be carefully selected to provide a maximum working radius, and when two cranes are being used on the same site mast heights and jib lengths must be considered so that they do not clash.
Cranes are typically structured around two rails at their base between 4.5m-10m apart with wheels in each corner. Cranes are not normally tied down, so sufficient kentledge must be provided to ensure vertical loading from the crane passes through the rails and into the foundation. The foundation is designed so that the unfactored loading from the crane and the unfactored loading from the foundation itself create a bearing pressure which is less than the allowable bearing pressure of the soil.
Various foundation types can be selected depending on the ground conditions:
- Where possible a structural fill can be compacted and used to support a crane with the load spreading through layers of track support at 45° in to the soil strata below.
- When loads from the crane increase, reinforced concrete foundations may be required. This can involve a series of reinforced concrete beams used to support line loads as a result of the crane loading.
- When ground conditions are particularly poor, piled foundations may be necessary. Careful design is required to ensure that reinforcement at the top of the pile top does not cause problems for positioning the mast base section of the crane.
[edit] Related articles on Designing Buildings Wiki
- Avoiding crane collapses.
- Bituminous mixing and laying plant.
- CDM.
- Compressed air plant.
- Concreting plant.
- Construction plant.
- Crane regulations.
- Deleterious materials.
- Designers.
- Design liability.
- Demolition.
- Earth-moving plant.
- Electromagnetic overhead cranes.
- Excavating plant.
- Facade retention.
- Falsework.
- Forklift truck.
- Formwork.
- Gantry.
- Health and Safety.
- Scaffolding.
- Temporary works
- Trench support.
- Types of crane.
[edit] External references
- BS5975:2008 + A1: 2001 Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework (BSI 2011).
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.