Absorption refrigeration in buildings
Refrigerants are used in buildings:
- For heating, ventilation and air conditioning (HVAC) systems.
- To provide cooling for refrigeration.
- To provide cooling for industrial processes.
They provide cooling in a process that is essentially the same as that used in domestic fridges, based on either compression or absorption.
Absorption and compression refrigeration both work on a similar basis, in that a refrigerant boils at a low temperature and pressure, and is then is then pressurised, and condensed at a higher temperature and pressure. The process of condensing releases heat which is rejected.
In ‘conventional’ compression systems, a liquid refrigerant with a low boiling point absorbs heat from the body that is being cooled and boils in an evaporator to form a gas. The resulting gas is then compressed, which increases its temperature further. The gas is then condensed, releasing its latent heat which is rejected. The process then repeats.
However, whilst in compression refrigeration, the compression and refrigerant flow is achieved by an electrical compressor, in absorption refrigeration, compression is achieved by heating, and circulation is achieved absorbing the refrigerant into and absorber and by an electrical pump. This pump uses much less energy than a compressor.
The liquid refrigerant absorbs heat from the body that is to be cooled (in buildings this may be water that once cool is circulated back to the building) and the refrigerant evaporates at low pressure (in the ‘evaporator’). It is then absorbed into an absorber fluid and the refrigerant / absorber mixture is heated (in the ‘generator’). The refrigerant evaporates again, this time at higher temperature and pressure. The refrigerant is then condensed (in the ‘condenser’) and the heat rejected. The process is then repeated.
Double-effect absorption cooling repeats the process of heating and condensing with as second generator and condenser to increase cooling capacity.
The heat in absorption refrigeration can be gas powered, but absorption refrigeration is particularly suited to situations where ‘waste’, or other low-cost heat supply is available, such as; surplus heat from combined heat and power plant (CHP), heat from industrial processes, district heating, geothermal or solar thermal energy and so on.
Absorption refrigeration was first developed in France in 1850’s, but it was not commercially exploited until the 1920’s.
The most common combinations of refrigerant and absorbent fluid are:
Ammonia is not an ozone depleting gas or a global warming gas. However it is flammable and toxic so additional precautions are necessary in design and use.
[edit] Related articles on Designing Buildings
- Absorption cooling.
- Absorption heat pump.
- Absorption refrigeration.
- Adsorption cooling.
- Air conditioning.
- Air handling unit.
- BREEAM Impact of refrigerants.
- Chilled beam.
- Chiller unit.
- Chilled water.
- Compression refrigeration.
- Constant air volume.
- Evaporative cooling.
- Fan coil unit.
- Heat pumps
- HVAC.
- Passive building design.
- Refrigerant.
- Variable air volume.
- Variable refrigerant flow.
[edit] External references
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.