Absorption heat pump
Heat pumps transfer heat from a lower temperature source to one of a higher temperature. This is the opposite of the natural flow of heat and is the same process that is used to extract heat from a fridge.
Heat pumps can be used domestically or commercially to provide hot water, space heating, or other applications such as heating swimming pools.
Generally heat pumps work using compression, and are powered by electricity. A refrigerant fluid is run through the lower temperature source. The fluid ‘absorbs’ heat and boils, even at temperatures below 0° C. The resulting gas is then compressed, which increases its temperature further. The gas is passed into heat exchanger coils, where it condenses, releasing its latent heat. The process then repeats.
Absorption heat pumps work on a similar basis, with a refrigerant that boils at low temperature and pressure, however, in this case, the refrigerant gas (generally ammonia) is then absorbed in a solution (the ‘absorber’, generally water) which is then heated in the ‘generator’ so that the refrigerant evaporates again, but this time at a higher pressure and temperature. It is then condensed through a heat exchanger, heating ‘cool’ return water from the building, and the process then begins again.
The heat source is generally gas-fuelled and so they can also be referred to as a gas absorption heat pump (GAHP). This process is more efficient than a traditional gas-powered boiler.
Other heat sources can be used, such as combined heat and power plant (CHP), solar heated water, (although this requires specialist flat plate collectors that raise the temperature of the water above that normally required), geothermal heat, district heat networks and so on.
Absorption heat pumps are most efficient when supplying low-temperature hot water, such as for underfloor heating. They may be used in combination with conventional boilers to produce higher-temperature water.
Unlike some refrigerants used in compression heat pumps, ammonia is not an ozone depleting gas or a global warming gas. However it is flammable and toxic, and so units are generally hermetically sealed rather than engineered systems and are located outside.
Absorption chillers and absorption refrigerators work on the same principal as absorption heat pumps, but with the flow of heat reversed, so that heat is absorbed from the interior and rejected to the exterior.
[edit] Related articles on Designing Buildings
- Absorption refrigeration.
- Air handling unit.
- Air source heat pumps.
- BSRIA domestic hot water heat pumps testing.
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Earth-to-air heat exchangers.
- Exhaust air heat pump.
- Gas absorption heat pump.
- Geothermal pile foundations.
- Ground energy options.
- Ground source heat pumps.
- Heat pump.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Room-based heat pumps.
- Solar-assisted heat pump.
- Solar thermal heating.
- Water source heat pumps.
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.