Heating ventilation and air conditioning HVAC
'HVAC' refers to Heating Ventilation and Air Conditioning, which can be used in buildings to:
- Maintain internal air quality.
- Regulate internal temperatures.
- Regulate internal humidity.
It is sometimes extended to include other services, such as refrigeration (HVACR). For more information see: HVACR.
Internal air quality can be maintained by a combination of introducing 'fresh' air into the building, extracting 'stale air' and by filtration. Ventilation may be natural, mechanical, or mixed mode (a hybrid system). See Ventilation for more information.
Internal temperatures can be regulated by heating and cooling. Typically, this is achieved by heated water (or sometimes steam) and chilled water that is generated by boilers and chillers and then used in heating coils and cooling coils as part of the ventilation system. Alternatively, hot water may be used to supply systems such as radiators, underfloor heating and so on.
Humidity can be regulated by ventilation, dehumidification and humidification. Dehumidification is often provided alongside cooling as cooling air reduces the amount of moisture air is able to 'hold', resulting in condensation. 'Close' humidity control (to within 10%) can involve cooling and dehumidification, then re-heating and re-humidification.
Very broadly, HVAC systems can be centralised in a building, or local to the space they are serving, or a combination of both (for example, local air handling units supplied by centrally-generated cooling). They may also be connected to a wider district heating or cooling network.
They may be integrated, with heating, ventilation and air conditioning provided by a single system, for example, air handling units connected to ductwork, or they may be a combination of separate systems, for example mechanical ventilation with radiators for heating and local comfort cooling units.
They may also include passive (or 'natural') systems such as natural ventilation.
In mechanically ventilated commercial developments, HVAC is often provided by air handling units (AHU) connected to ductwork that supplies air to and extracts air from internal spaces. Air handling units typically comprise an insulated box that might include some, or all of the following components; filter racks or chambers, a fan (or blower), heating elements, cooling elements, dehumidification, sound attenuators and dampers. Air handling units that consist of only a fan and a heating or cooling element, located within the space they are serving, may be referred to as fan coil units (FCU). See Air handling units for more information.
HVAC can consume large amounts of energy, and where possible, demand should be reduced and passive systems adopted.
Extracting internal air and replacing it with outside air can increase the need for heating and cooling. This can be reduced by re-circulating a proportion of internal air, or by heat recovery ventilation (HRV) that recovers heat from extract air and uses it to pre-heat incoming fresh air.
It is important that all aspects of HVAC systems are considered together during the design process, even where involve independent systems. This is because of the interaction between heating, cooling, humidity control and ventilation. This is particularly complicated when other elements of environmental behaviour are considered such as solar gain, natural ventilation, thermal mass, and so on.
The design of HVAC systems is generally a specialist task, undertaken by a building services engineer, and because of its interaction with other elements of the building it is important that it is considered from the outset, as a fundamental part of the design process, and not an 'add on' at the end.
HVAC may be controlled by a building management system to maximise occupant comfort and minimise energy consumption.
Regular inspection and maintenance is necessary to ensure that systems are operating optimally.
[edit] Related articles on Designing Buildings
- Air conditioning.
- Air handling unit.
- Building management systems.
- Building services
- Building services engineer.
- CFD.
- Dehumidification.
- Displacement ventilation.
- Drivers of change in global heating markets.
- Ductwork.
- Fan coil unit.
- Heating.
- Humidification.
- HVACR.
- Mechanical, electrical and plumbing MEP.
- Mechanical ventilation.
- Natural ventilation.
- Plant room.
- Refrigeration.
- Thermal comfort.
- Ventilation.
[edit] External references
Featured articles and news
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.
Comments
[edit] To make a comment about this article, or to suggest changes, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.
Ventilation systems help maintain a healthy environment by regulating moisture and humidity, controlling temperatures, removing contaminated or stale air, ridding the air of dust or allergens, providing the proper exchange of oxygen and carbon dioxide levels and exchanging fresh air throughout a confined space or spaces. Ventilation systems are used in various settings including homes and workplaces.