Variable air volume VAV
Ventilation is necessary in buildings to remove ‘stale’ air and replace it with ‘fresh’ air:
- Helping to moderate internal temperatures.
- Replenishing oxygen.
- Reducing the accumulation of moisture, odours, bacteria, dust, carbon dioxide, smoke and other contaminants that can build up during occupied periods.
- Creating air movement, which improves the comfort of occupants.
Very broadly, ventilation in buildings can be classified as ‘natural’ or ‘mechanical’. Mechanical ventilation systems can also include heating, cooling, humidity control and air filtration. These functions are often described collectively as HVAC (Heating Ventilation and Air Conditioning).
Within these systems, ventilation and temperature can be regulated either by:
- Variable air volume (VAV), in which the temperature of the supply air remains constant, but the volume varies (also known as variable volume, constant temperature VV-CT).
- Constant air volume (CAV) in which the volume of air supply remains constant, but the temperature varies (also known as constant volume, variable temperature CV-VT).
- Variable volume, variable temperature (VV-VT sometimes referred to as variable volume and temperature - VVT).
VAV systems tend to provide closer control of air temperature than CAV systems and require lower fan speeds, as a result of which they can use less energy and generate less noise.
In simple VAV systems, air handling units (AHU) supply air through ductwork to spaces within the building, and the temperature of the spaces is moderated by adjusting the supply flow.
In more complex systems, where spaces have different heating or cooling demands, there may be additional local control of the amount of air that enters each space. Typically, cool air is supplied by an air handling unit, and thermostatically controlled dampers regulate the amount of air that enters each space. The damper must always remain partially open to allow some ‘fresh’ air into the space.
The fans in the air handling unit are adjusted (variable frequency drive VFD) to control the air pressure in the ductwork. Refrigerant flow is also adjusted to ensure that the air temperature remains constant. VAV terminal units may include fans that re-circulate a proportion of internal air along with the ‘fresh’ supply air to reduce the cooling load.
Where variations between spaces mean that some local heating is required in to maintain constant temperatures throughout a building, VAV terminal units may re-heat the supply air. Despite the apparent waste of re-heating previously cooled air, this can be more economic than providing a warm air supply from the air handling unit when there is only limited heating demand. Heat may be provided in VAV terminal units by electrical elements or by hot water coils.
In dual duct systems, both cool air and warm air ducts are provided.
Ventilation in buildings is regulated by Part F of the building regulations.
[edit] Related articles on Designing Buildings
- Air conditioning.
- Building services.
- Chiller unit.
- Computational fluid dynamics.
- Constant air volume.
- Cross ventilation.
- Dew point.
- Humidity.
- Interstitial condensation.
- Mechanical ventilation.
- Natural ventilation.
- Passive building design.
- Solar chimney.
- Stack effect.
- Thermal comfort.
- Ventilation.
- Volume.
Featured articles and news
Cladding remediation programmes, transparency and target date.
National Audit Office issue report on cladding remediation.
HBPT and BEAMS Jubilees. Book review.
Does the first Labour budget deliver for the built environment?
What does the UK Budget mean for electrical contractors?
Mixed response as business pays, are there silver linings?
A brownfield housing boost for Liverpool
A 56 million investment from Homes England now approved.
Fostering a future-ready workforce through collaboration
Collaborative Futures: Competence, Capability and Capacity, published and available for download.
Considerate Constructors Scheme acquires Building A Safer Future
Acquisition defines a new era for safety in construction.
AT Awards evening 2024; the winners and finalists
Recognising professionals with outstanding achievements.
Reactions to the Autumn Budget announcement
And key elements of the quoted budget to rebuild Britain.
Chancellor of the Exchequer delivers Budget
Repairing, fixing, rebuilding, protecting and strengthening.
Expectation management in building design
Interest, management, occupant satisfaction and the performance gap.
Connecting conservation research and practice with IHBC
State of the art heritage research & practice and guidance.
Innovative Silica Safety Toolkit
Receives funding boost in memory of construction visionary.
Gentle density and the current context of planning changes
How should designers deliver it now as it appears in NPPF.
Sustainable Futures. Redefining Retrofit for Net Zero Living
More speakers confirmed for BSRIA Briefing 2024.
Making the most of urban land: Brownfield Passports
Policy paper in brief with industry responses welcomed.
The boundaries and networks of the Magonsæte.