Sustainable Timber in Construction
Contents |
[edit] Introduction
If sustainably sourced, timber is undoubtedly one of the most environmentally-friendly materials currently available, being a natural carbon sink and truly renewable. This has made timber a popular material among sustainability champions and protagonists of green construction. Although its use in construction dates back many centuries, the advent of Cross Laminated Timber (CLT) has now made it possible to construct complete buildings in timber.
[edit] What is sustainable timber?
Sustainable timber refers to timber that has been harvested responsibly from well managed forests that are continuously replenished; and ensure that there is no damage to the surrounding environment, or to native flora and fauna.
In the UK two main certification schemes, Forest Stewardship Council (FSC) and Programme for the Endorsement of Forest Certification (PEFC), assure that all wood and wood-based products originate from sustainable sources.
[edit] Timber and climate change
Timber has a significantly lower embodied carbon footprint compared to other mainstream construction materials. This is due to the minimal processing required, even when accounting for the process of laminating (glulam or cross-laminated timber) which is generally required to create structural timber products.
If sustainably sourced, using timber can have an additional positive environmental impact because trees absorb carbon dioxide through photosynthesis and lock it away as carbon, thus removing it from the atmosphere. This phenomenon is called sequestration and can essentially offset the processing and transportation energy associated with timber products. Therefore, timber can be considered a carbon negative material. It is however important to remember that the sequestered carbon will be released at the end of life of the timber product (unless it is reused or recycled). The global warming implications of disposal options vary and are detailed in the table below.
It is interesting to note that in response to the Paris Agreement (COP21), scientists proposed a range of “negative emissions technologies (NETs) in order to limit climate change to “well below 2C”, three of which relate to timber and its capacity to absorb and store carbon from the atmosphere: afforestation and reforestation, building with biomass and biomass with carbon capture and storage.
The recently published UK’s 25 year environmental plan also recognises the significance of using sustainable resources, and specifically recommends increasing supplies of timber.
[edit] Timber and life-cycle impacts
Recent studies have found that the life cycle emissions from a CLT framed building (without including sequestration) can be about 30-50% lower than a typical concrete framed building. When sequestration is included, the benefit can be much more significant. However, it is important to note that these results assume that 100% of the timber is diverted from landfill at the end of its useful life. If timber is landfilled at the end of its useful life, analysis has suggested that the net emissions from a CLT framed building could exceed the life cycle emissions from a typical concrete framed building.
When timber is landfilled it rots and releases up to 60% of the sequestered carbon back to the atmosphere as methane, which is 25 times worse than carbon dioxide in terms of global warming impact.
It is important therefore to explore the wider implications of sustainable solutions to ensure they are not creating problems for future generations.
[edit] Related articles on Designing Buildings
- Chain of custody.
- Confederation of Timber Industries.
- Delivering sustainable low energy housing with softwood timber frame.
- Environmental plan.
- European Union Timber Regulation.
- Forests.
- Forest ownership.
- Forest Stewardship Council.
- Green Seal.
- Legal and sustainable timber.
- Legally harvested and traded timber.
- Programme for the Endorsement of Forest Certification.
- Sustainability.
- Sustainable materials.
- Sustainable Wood.
- Sustainably procuring tropical hardwood.
- Timber.
- Whole life carbon assessment of timber
Featured articles and news
CIOB student competitive construction challenge Ireland
Inspiring a new wave of Irish construction professionals.
Challenges of the net zero transition in Scotland
Skills shortage and ageing workforce hampering Scottish transition to net zero.
Private rental sector, living standards and fuel poverty
Report from the NRH in partnership with Impact on Urban Health.
.Cold chain condensing units market update
Tracking the evolution of commercial refrigeration unit markets.
Attending a conservation training course, personal account
The benefits of further learning for professsionals.
Restoring Alexander Pope's grotto
The only surviving part of his villa in Twickenham.
International Women's Day 8 March, 2025
Accelerating Action for For ALL Women and Girls: Rights. Equality. Empowerment.
Lack of construction careers advice threatens housing targets
CIOB warning on Government plans to accelerate housebuilding and development.
Shelter from the storm in Ukraine
Ukraine’s architects paving the path to recovery.
BSRIA market intelligence division key appointment
Lisa Wiltshire to lead rapidly growing Market Intelligence division.
A blueprint for construction’s sustainability efforts
Practical steps to achieve the United Nations Sustainable Development Goals.
Timber in Construction Roadmap
Ambitious plans from the Government to increase the use of timber in construction.
ECA digital series unveils road to net-zero.
Retrofit and Decarbonisation framework N9 launched
Aligned with LHCPG social value strategy and the Gold Standard.
Competence framework for sustainability
In the built environment launched by CIC and the Edge.
Institute of Roofing members welcomed into CIOB
IoR members transition to CIOB membership based on individual expertise and qualifications.
Join the Building Safety Linkedin group to stay up-to-date and join the debate.
Government responds to the final Grenfell Inquiry report
A with a brief summary with reactions to their response.