Carbon footprint
Greenhouse gases are gases that are relatively transparent to short-wave infrared radiation (such as heat from the sun). This means that they allow sunlight to enter the atmosphere and heat the Earth’s surfaces. These surfaces then re-radiate that heat as long-wave infrared radiation, which greenhouse gases tend to absorb rather than transmit.
The result is that the long-wave infrared radiation is ‘trapped’ and heat accumulates in the atmosphere causing a warming process. This process is known as the ‘greenhouse effect' because it is similar to the effect that glass has, trapping heat in greenhouses.
The four main greenhouse gases are:
For more information see: Greenhouse gases.
The term ‘carbon footprint’ refers to the total greenhouse gas emissions associated with a particular policy, individual, event, development or product.
It can be used as a measure of the impact that something has on climate change, or of the degree to which it consumes the Earth's resources. This can be used to help understand and reduce the impacts of activities, or to compare things so that lower impact alternatives can be selected.
Carbon footprints are very difficult to calculate accurately because of the complexity of the life cycle of the elements being analysed, which can include multiple components, comprising many raw materials, which have to be extracted, processed, transported, manufactured, operated, disposed of and so on. As a result, a number of carbon footprint calculators have been developed to help produce consistent, and so comparable, results.
Carbon footprints can be reduced by the careful selection, use and re-use of products, and by carbon offsetting, a process that offsets unavoidable carbon emissions by funding carbon dioxide saving projects.
The term ‘carbon footprint’ is similar in meaning to ‘embodied energy’ which refers to the total energy consumed by a building or product throughout its life, including; initial embodied energy, recurring embodied energy, operational energy and demolition energy. For more information see: Embodied energy.
NB The Chancery Lane Project, Glossary entries, states: ‘The term ‘Carbon Footprint’ is often used as an umbrella term for more specific carbon emission measurements, such as Organisational Carbon Footprint, Supply Chain Carbon Footprint, and Product Carbon Footprint. Therefore, the common use of ‘carbon footprint’ often means these more specific terms are obscured or conflated. An overall Carbon Footprint accounts for all of the Greenhouse Gases mentioned in the Kyoto Protocol.'
[edit] Related articles on Designing Buildings
- Carbon dioxide.
- Carbon emissions.
- Carbon factor.
- Carbon Plan.
- Embodied carbon.
- Embodied energy.
- Life cycle assessment.
- Low or zero carbon technologies.
- Net zero by 2050.
- Operational carbon.
- Product carbon footprint.
- The Carbon Project: improving carbon emission data.
- Upfront emissions.
- Using CO2 to make construction products and materials.
- Where does embodied carbon analysis stop?
- Wood and carbon.
Featured articles and news
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Heritage staff wellbeing at work survey.
A five minute introduction.
50th Golden anniversary ECA Edmundson apprentice award
Showcasing the very best electrotechnical and engineering services for half a century.
Welsh government consults on HRBs and reg changes
Seeking feedback on a new regulatory regime and a broad range of issues.
CIOB Client Guide (2nd edition) March 2025
Free download covering statutory dutyholder roles under the Building Safety Act and much more.
AI and automation in 3D modelling and spatial design
Can almost half of design development tasks be automated?
Minister quizzed, as responsibility transfers to MHCLG and BSR publishes new building control guidance.
UK environmental regulations reform 2025
Amid wider new approaches to ensure regulators and regulation support growth.
The maintenance challenge of tenements.
BSRIA Statutory Compliance Inspection Checklist
BG80/2025 now significantly updated to include requirements related to important changes in legislation.