Embodied carbon
‘Climate Emergency Design Guide: How new buildings can meet UK climate change’, published by the London Energy Transformation Initiative (LETI) in January 2020 defines embodied carbon (EC) (or embedded carbon) as:
‘The carbon emissions associated with the extraction and processing of materials and the energy and water consumption used by the factory in producing products and constructing the building. It also includes the ‘in-use’ stage (maintenance, replacement, and emissions associated with refrigerant leakage) and ‘end of life’ stage (demolition, disassembly, and disposal of any parts of product or building) and any transportation relating to the above.’
It defines upfront embodied carbon as:
‘The carbon emissions associated with the extraction and processing of materials, the energy and water consumption used by the factory in producing products, transporting materials to site, and constructing the building.’
And whole life carbon (WLC) as including:
‘… embodied carbon, as defined above, and operational carbon. The purpose of using WLC is to move towards a building or a product that generates the lowest carbon emissions over its whole life (sometimes referred as ‘cradle-to-grave’).’
Embodied carbon may also be referred to as embodied emissions.
NB Redefining value, The manufacturing revolution, Remanufacturing, refurbishment, repair and direct reuse in the circular economy, published by the United Nations Environment Programme in 2018, suggests embodied material emissions: ‘Refers to the carbon dioxide and greenhouse gas equivalent emissions emitted during the extraction and primary processing stages of materials later used as inputs to OEM New and value-retention process production activities; ‘cradle-to-gate’ up until entering the production facility ‘gate’. Modeling of embodied material emissions uses a material-specific conversion (kgCO2-eq./unit), based on the global average for each material type, in accordance with the Inventory of Carbon and Emissions (ICE) (Hammond and Jones 2011).’
Embodied Carbon, The Inventory of Carbon and Energy (ICE), By Prof. Geoffrey Hammond and Craig Jones, Ed. Fiona Lowrie and Peter Tse, published by BSRIA in 2011, states embodied carbon (EC) is: ‘…the sum of fuel related carbon emissions (i.e. embodied energy which is combusted – but not the feedstock energy which is retained within the material) and process related carbon emissions (i.e. non-fuel related emissions which may arise, for example, from chemical reactions). This can be measured from cradle-to-gate, cradle-to-grave, or from cradle-to grave.’
[edit] Related articles on Designing Buildings
- An in-depth look at Environmental Product Declarations EPDs.
- BPIE report urges EU to incorporate the carbon footprint of construction into policy.
- BS EN 15978-1.
- BSRIA Whitepaper on Embodied Carbon NZG 4/2023
- Carbon dioxide.
- Carbon footprint.
- Climate change act.
- Climate change science.
- Climate Emergency Design Guide.
- Cradle to grave.
- Dr. Natasha Watson; UK lead for embodied carbon at Buro Happold.
- Embedded carbon emissions.
- Embodied energy.
- EN 15804+A1 2012.
- Environmental product declaration EPD.
- Greenhouse gas.
- Life Cycle Carbon Emissions.
- Mandatory and optional environmental impact categories.
- Optional environmental impact categories.
- PHribbon tool calculates embodied carbon of designs.
- Product Environmental Footprint PEF.
- Product category rules PCR.
- RICS launches new global edition of its ground-breaking Whole Life Carbon Assessment standard.
- Sustainable procurement.
- Sustainability in building design and construction.
- The sustainability of construction works.
- Upfront emissions.
- Use stage embodied carbon.
- Wood, embodied carbon and operational carbon.
- Whole life carbon.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.