Embodied carbon
‘Climate Emergency Design Guide: How new buildings can meet UK climate change’, published by the London Energy Transformation Initiative (LETI) in January 2020 defines embodied carbon (EC) (or embedded carbon) as:
‘The carbon emissions associated with the extraction and processing of materials and the energy and water consumption used by the factory in producing products and constructing the building. It also includes the ‘in-use’ stage (maintenance, replacement, and emissions associated with refrigerant leakage) and ‘end of life’ stage (demolition, disassembly, and disposal of any parts of product or building) and any transportation relating to the above.’
It defines upfront embodied carbon as:
‘The carbon emissions associated with the extraction and processing of materials, the energy and water consumption used by the factory in producing products, transporting materials to site, and constructing the building.’
And whole life carbon (WLC) as including:
‘… embodied carbon, as defined above, and operational carbon. The purpose of using WLC is to move towards a building or a product that generates the lowest carbon emissions over its whole life (sometimes referred as ‘cradle-to-grave’).’
Embodied carbon may also be referred to as embodied emissions.
NB Redefining value, The manufacturing revolution, Remanufacturing, refurbishment, repair and direct reuse in the circular economy, published by the United Nations Environment Programme in 2018, suggests embodied material emissions: ‘Refers to the carbon dioxide and greenhouse gas equivalent emissions emitted during the extraction and primary processing stages of materials later used as inputs to OEM New and value-retention process production activities; ‘cradle-to-gate’ up until entering the production facility ‘gate’. Modeling of embodied material emissions uses a material-specific conversion (kgCO2-eq./unit), based on the global average for each material type, in accordance with the Inventory of Carbon and Emissions (ICE) (Hammond and Jones 2011).’
Embodied Carbon, The Inventory of Carbon and Energy (ICE), By Prof. Geoffrey Hammond and Craig Jones, Ed. Fiona Lowrie and Peter Tse, published by BSRIA in 2011, states embodied carbon (EC) is: ‘…the sum of fuel related carbon emissions (i.e. embodied energy which is combusted – but not the feedstock energy which is retained within the material) and process related carbon emissions (i.e. non-fuel related emissions which may arise, for example, from chemical reactions). This can be measured from cradle-to-gate, cradle-to-grave, or from cradle-to grave.’
[edit] Related articles on Designing Buildings
- An in-depth look at Environmental Product Declarations EPDs.
- BPIE report urges EU to incorporate the carbon footprint of construction into policy.
- BS EN 15978-1.
- BSRIA Whitepaper on Embodied Carbon NZG 4/2023
- Carbon dioxide.
- Carbon footprint.
- Climate change act.
- Climate change science.
- Climate Emergency Design Guide.
- Cradle to grave.
- Dr. Natasha Watson; UK lead for embodied carbon at Buro Happold.
- Embedded carbon emissions.
- Embodied energy.
- EN 15804+A1 2012.
- Environmental product declaration EPD.
- Greenhouse gas.
- Life Cycle Carbon Emissions.
- Mandatory and optional environmental impact categories.
- Optional environmental impact categories.
- PHribbon tool calculates embodied carbon of designs.
- Product Environmental Footprint PEF.
- Product category rules PCR.
- RICS launches new global edition of its ground-breaking Whole Life Carbon Assessment standard.
- Sustainable procurement.
- Sustainability in building design and construction.
- The sustainability of construction works.
- Upfront emissions.
- Use stage embodied carbon.
- Wood, embodied carbon and operational carbon.
- Whole life carbon.
Featured articles and news
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Key points and relevance to construction of meeting, due to reconvene.