Sky temperature
Radiation is a heat transfer mechanism, along with conduction, convection and phase change. All bodies which are hotter than 0°K emit thermal radiation. They also absorb thermal radiation emitted by their surroundings. The difference in the total amount of radiation emitted and absorbed by a body at any given moment may result in a net heat transfer which will produce a change in the temperature of that body.
Thermal radiation includes all those wavelengths of the electromagnetic spectrum which will heat a body when absorbed by it, ranging from about 100nm to 100,000nm. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is relatively small, and relative to the temperature of the sun this range is ‘cold’ and so radiating at a ‘long’ wavelength compared to the sun. This anomaly allows us to categorise thermal radiation as short-wave solar radiation and terrestrial or long wave infra-red radiation.
Terrestrial surfaces exchange long wave infra-red radiation in all directions within a hemisphere about their azimuth. This hemisphere can include a wide variety of thermal bodies, ranging from the sky to the ground and solid bodies, such as buildings, all of which will be emitting different intensities and wavelengths of thermal radiation themselves. In order to simplify this complex situation terrestrial radiation is generally treated as an average heat transfer based on hemispherical emissivities and average hemispherical surface temperatures.
The exchange of long wave infra-red radiation between a surface and the sky will depend on the exposure of the body to it, which may be affected by the angle of inclination, the extent to which it is obstructed, for example by other buildings, and the sky temperature.
The temperature in outer space approaches absolute zero at around 3 Kelvin, or -270°C. However, the atmosphere of the earth contains gases such as carbon dioxide, water vapour and other particles, which themselves emit long wave infra-red radiation, increasing the effective sky temperature.
This means that at any given location, the sky temperature will depend on variables such as altitude, humidity, cloud cover and the presence of other particles in the air such dust or pollution.
Under cloudless conditions in the desert, sky temperatures close to -50°C are commonly recorded, whilst in humid, cloudy conditions in countries such as Thailand, sky temperatures might be close to 20°C. Very broadly, the average sky temperature is likely to be near to 0°C.
An infrared thermometer can be used to measure the sky temperature. But care must be taken over the direction it is pointed, and how an average is determined. A different reading will be given depending on whether the temperature is measured at the zenith, where there is less atmosphere between the thermometer and space, or close to the horizon, and whether the temperature of a cloud is recorded or of the clear sky.
The sky temperature can be calculated for a given location if the amount of cloud cover is known. This can be estimated, or during the day, can be calculated by comparing the intensity of monitored horizontal global solar radiation with that amount which would theoretically have been recorded if the sky were perfectly clear.
[edit] Related articles on Designing Buildings
- Albedo.
- Cool roof.
- Dry-bulb temperature.
- Electromagnetic spectrum.
- Emissivity.
- Globe temperature.
- Mean radiant temperature.
- Operative temperature.
- Predicted mean vote.
- Psychometric chart.
- Running mean temperature.
- Sling psychrometer.
- Solar reflectance index.
- Temperature
- The thermal behaviour of spaces enclosed by fabric membranes.
- Thermal comfort.
- Thermal indices.
- Thermal optical properties.
- Thermal pleasure in the built environment.
- Urban heat islands.
- Wet-bulb globe temperature.
- Wet-bulb temperature.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.