Phase change in buildings
Phase change (or phase transition) is the transition of a system from one state of matter to another by heat transfer. For example, from a solid to a liquid or from a liquid to a gas.
Phase changes can be a mechanisms for heat transfer in buildings.
When systems change phase, they absorb or release significant amounts of heat energy (latent heat, expressed in J/kg). The systems themselves do not change temperature as the energy is consumed or generated by the physical process of changing the state of the system. For example, when water evaporates, it absorbs heat, producing a cooling effect. So when water evaporates from the surface of a building, or when sweat evaporates from the skin, this has a cooling effect. Conversely, when water condenses it releases heat.
This mechanism has been used to cool buildings in hot climates by spraying water over the building fabric, however phase change is often overlooked in heat transfer and energy use calculations.
Phase change is also important in refrigeration, where refrigerant gases absorb heat from the cooling medium (typically water) as they evaporate, and release heat when they condense, which is rejected to the outside (or recovered). The exact opposite of this process is used to generate heat in heat pumps.
See refrigerants and heat pumps for more information.
A newly-emerging application of phase change in buildings is the use of phase change materials (PCM). These are generally materials with a large specific latent heat capacity. They can be used in construction to reduce internal temperature changes by storing latent heat in the solid-liquid or liquid-gas phase change of a material. Heat is absorbed and released almost isothermally and is used to reduce the energy consumed by conventional heating and cooling systems by reducing peak loads.
Phase change materials used in buildings will typically melt and solidify within a range of 18-30ºC. They are able to store up to 14 times more thermal energy per unit volume than conventional thermal storage materials.
See phase change materials for more information.
[edit] Related articles on Designing Buildings Wiki
- Advanced phase change materials.
- Advanced phase change materials industry.
- Heat transfer.
- Thermal comfort.
- Thermal mass.
- Building services.
- Conduction.
- Convection.
- Gross calorific value.
- Insulation.
- Latent heat.
- Mass transfer.
- Phase change materials.
- Refrigerants.
- Solar gain.
- Thermal optical properties.
- Thermal mass.
Featured articles and news
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.
Construction contract awards remain buoyant
Infrastructure up but residential struggles.
Home builders call for suspension of Building Safety Levy
HBF with over 100 home builders write to the Chancellor.
CIOB Apprentice of the Year 2024/2025
CIOB names James Monk a quantity surveyor from Cambridge as the winner.
Warm Homes Plan and existing energy bill support policies
Breaking down what existing policies are and what they do.
Treasury responds to sector submission on Warm Homes
Trade associations call on Government to make good on manifesto pledge for the upgrading of 5 million homes.
A tour through Robotic Installation Systems for Elevators, Innovation Labs, MetaCore and PORT tech.
A dynamic brand built for impact stitched into BSRIA’s building fabric.
BS 9991:2024 and the recently published CLC advisory note
Fire safety in the design, management and use of residential buildings. Code of practice.