Phase change in buildings
Phase change (or phase transition) is the transition of a system from one state of matter to another by heat transfer. For example, from a solid to a liquid or from a liquid to a gas.
Phase changes can be a mechanisms for heat transfer in buildings.
When systems change phase, they absorb or release significant amounts of heat energy (latent heat, expressed in J/kg). The systems themselves do not change temperature as the energy is consumed or generated by the physical process of changing the state of the system. For example, when water evaporates, it absorbs heat, producing a cooling effect. So when water evaporates from the surface of a building, or when sweat evaporates from the skin, this has a cooling effect. Conversely, when water condenses it releases heat.
This mechanism has been used to cool buildings in hot climates by spraying water over the building fabric, however phase change is often overlooked in heat transfer and energy use calculations.
Phase change is also important in refrigeration, where refrigerant gases absorb heat from the cooling medium (typically water) as they evaporate, and release heat when they condense, which is rejected to the outside (or recovered). The exact opposite of this process is used to generate heat in heat pumps.
See refrigerants and heat pumps for more information.
A newly-emerging application of phase change in buildings is the use of phase change materials (PCM). These are generally materials with a large specific latent heat capacity. They can be used in construction to reduce internal temperature changes by storing latent heat in the solid-liquid or liquid-gas phase change of a material. Heat is absorbed and released almost isothermally and is used to reduce the energy consumed by conventional heating and cooling systems by reducing peak loads.
Phase change materials used in buildings will typically melt and solidify within a range of 18-30ÂșC. They are able to store up to 14 times more thermal energy per unit volume than conventional thermal storage materials.
See phase change materials for more information.
[edit] Related articles on Designing Buildings Wiki
- Advanced phase change materials.
- Advanced phase change materials industry.
- Heat transfer.
- Thermal comfort.
- Thermal mass.
- Building services.
- Conduction.
- Convection.
- Gross calorific value.
- Insulation.
- Latent heat.
- Mass transfer.
- Phase change materials.
- Refrigerants.
- Solar gain.
- Thermal optical properties.
- Thermal mass.
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February