Calorific value
The term ‘calorific value’ (CV) is a measure of heating power, and refers to the amount of energy released when a fuel is completely combusted under specific conditions. For solid and liquid fuels this is measured at constant volume and for gaseous fuels it is measured at constant pressure.
Calorific vales for a range of fuels are published by the UK government.
Typically, calorific vales are expressed in Megajoules per cubic metre (MJ/m3) for solid and liquid fuels or Megajoules per kilogram (MJ/kg) for gaseous fuels.
Calorific value can be expressed as a Net Calorific Value (NCV, or Lower Heating Value), or a Gross Calorific Value (GCV, a Higher Heating Value):
- The Net Calorific Value considers that the combustion products contain water of combustion to the vapour state, and so the heat energy in the water is not recovered.
- The Gross Calorific Value considers that the water of combustion is condensed, and so the heat energy in the water is recovered.
NB Embodied Carbon, The Inventory of Carbon and Energy (ICE), By Prof. Geoffrey Hammond and Craig Jones, Ed. Fiona Lowrie and Peter Tse, published by BSRIA in 2011, defines the Calorific Value (CV) of energy as: ‘The energy content of a fuel (as may be released through combustion). It may be expressed as a gross calorific value (GCV) or net calorific value (NCV). The former is always larger than (or equal to) the latter. The difference is due to latent heat (energy) remaining in condensation (water vapour) after combustion. The difference is typically 5-10 per cent (e.g. 10 per cent for natural gas, 5 per cent for coal).’
Combined heat and power quality assurance (CHPQA) guidance notes, published by the Department for Business, Energy & Industrial Strategy in 2014, suggests that the: ‘Gross Calorific Value (GCV) of a fuel is the total energy available from that fuel (solid, liquid or gas) when it is completely burnt. It is expressed as heat per unit weight or volume of fuel. ‘Gross’ signifies that the water formed or liberated during combustion is condensed to the liquid phase. The GCV of a solid or liquid fuel is determined at constant volume and the GCV of a gaseous fuel is determined at constant pressure.’
[edit] Related articles on Designing Buildings
Featured articles and news
Cladding remediation programmes, transparency and target date.
National Audit Office issue report on cladding remediation.
HBPT and BEAMS Jubilees. Book review.
Does the first Labour budget deliver for the built environment?
What does the UK Budget mean for electrical contractors?
Mixed response as business pays, are there silver linings?
A brownfield housing boost for Liverpool
A 56 million investment from Homes England now approved.
Fostering a future-ready workforce through collaboration
Collaborative Futures: Competence, Capability and Capacity, published and available for download.
Considerate Constructors Scheme acquires Building A Safer Future
Acquisition defines a new era for safety in construction.
AT Awards evening 2024; the winners and finalists
Recognising professionals with outstanding achievements.
Reactions to the Autumn Budget announcement
And key elements of the quoted budget to rebuild Britain.
Chancellor of the Exchequer delivers Budget
Repairing, fixing, rebuilding, protecting and strengthening.
Expectation management in building design
Interest, management, occupant satisfaction and the performance gap.
Connecting conservation research and practice with IHBC
State of the art heritage research & practice and guidance.
Innovative Silica Safety Toolkit
Receives funding boost in memory of construction visionary.
Gentle density and the current context of planning changes
How should designers deliver it now as it appears in NPPF.
Sustainable Futures. Redefining Retrofit for Net Zero Living
More speakers confirmed for BSRIA Briefing 2024.
Making the most of urban land: Brownfield Passports
Policy paper in brief with industry responses welcomed.
The boundaries and networks of the Magonsæte.
Comments
[edit] To make a comment about this article, or to suggest changes, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.