Primary non-rechargeable batteries
Contents |
[edit] Introduction
A primary battery is a non-rechargeable, single-use battery as opposed to a secondary cell that can be recharged. A primary battery converts chemical energy into electrical energy by means of an electrochemical process. The electrochemical process that occurs is spontaneous Oxidation-Reduction (redox) this is where both a reduction reaction and an oxidation reaction take place at once. The earliest electrochemical cells were called wet cells as electrodes were submerged in a solution, later and more modern primary cells are more commonly dry cells.
A secondary or rechargeable battery acts as a galvanic cell when it is discharging, as it is converting chemical energy to electrical energy in a redox reaction but acts as an electrolytic cell when it is being charged as it is converting electrical energy to chemical energy. Electrolysis is the process by which ionic substances are broken down into simpler substances when an electric current is passed through them, thus recharging the battery's electrical potential.
In a redox reaction, electrons accumulate on the oxidation electrode (anode) and provide a negative potential, whilst a reduction process occurs at the reduction electrode (cathode), where a positive potential develops. The two electrodes are connected (called a salt bridge), so electrons flow from the oxidation electrode to the reduction electrode in an outer circuit due to the difference in potential between them, this produces an electric current.
[edit] Development
This type of primary cell where chemical energy produced in a redox reaction is converted to electrical energy is called either a galvanic or a voltaic cell and normally a wet cell. It is so-called firstly after the scientist Luigi Galvani (1737 – 1798) the pioneer of bioelectromagnetics who discovered that a frog's leg contracts when two different metals in contact touch different parts of the muscle, he initially named this animal electricity. Alessandro Volta later created the same effect using non-biological materials to challenge the animal electricity theory with his own metal-metal contact electricity theory, he is attributed as the inventor of the first electrical battery and this approach formed the basis of the modern-day primary battery that is still in use today.
In 1836 John Frederic Daniell, a British chemist and meteorologist, invented an improved primary cell called the Daniell cell. It consisted of an earthenware container filled with sulfuric acid and a zinc electrode immersed into a copper pot filled with a copper sulfate solution. This cell, which improved on other cells was itself improved on by the gravity cell invented in the 1860s by Frenchman Callaud.
The general-purpose primary zinc-carbon cell as is commonly used today stemmed from what was known as known as the Leclanché or dry cell, after the French engineer Georges Leclanché who invented it in 1866. This battery comprised a zinc alloy sheet containing small amounts of lead, cadmium, and mercury, a saturated aqueous solution of ammonium chloride, and impure manganese dioxide blended with carbon black and electrolyte formed around an electrode. It remains the basic design of the zinc-carbon dry cells available today with variations such as the zinc chloride battery.
Alkaline as opposed acid-based batteries were first developed by Waldemar Jungner in 1899, and, also separately by Thomas Edison in 1901. Showing greater safety and power potential, the Canadian engineer Lewis Urry invented the modern alkaline dry battery in the 1950s, which uses a zinc manganese dioxide.
[edit] Current use
Today alkaline batteries are the most common type of batteries in the world because of their stable, long-lasting, mobile performance, but zinc-carbon batteries are also still used as they remain cheaper. These come in various sizes with various voltages but AAA, AA, A-C batteries for example can be found in many small household appliances. Button/coin or watch cells often use the same components but are small enough to fit in smaller devices.
[edit] Related articles on Designing Buildings
Featured articles and news
How can digital twins boost profitability within construction?
A brief description of a smart construction dashboard, collecting as-built data, as a s site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure bill oulined
With reactions from IHBC and others on its potential impacts.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.