Outrigger
Contents |
[edit] Introduction
Originally a nautical phenomenon, outriggers have been used for millennia as extended floats attached to canoes to provide stability and so avoid overturning. The same principle has been used since the 1950s in construction to provide lateral stability to tall, narrow buildings.
[edit] Structural component
Outriggers are typically horizontal structures (usually trusses or reinforced concrete walls) inserted into buildings at various levels to tie the concrete core to the outer (or perimeter) structural framework. They can be tied to the core and combined with exterior columns, or may be connected to a super- or mega-column.
Outriggers add strength and stiffness to a structure that is far in excess of what may be available at specific locations throughout the building’s height. There is no one-size fits all and so the design of outriggers will usually be unique to suit the specific application.
The structural efficacy of outriggers will depend on their distribution through the building’s height, the number of outrigger levels, their configuration on plan, the depth of the outrigger truss or wall, the materials used and other considerations. But the effect of constructing an outrigger and thereby connecting the core with perimeter columns creates a unified lateral load-resisting system that can reduce the overturning moment at the core by up 40% to 60% in tall and super-tall buildings respectively.
Tall or slender buildings, such as 432 Park Avenue, New York, or 22 Bishopsgate, London, will often feature a core and outrigger system to resist lateral loads. In such cases, the overturning moment is large compared to the shear, and the flexural deformations of the building contribute greatly to lateral deflection e.g drift. Outriggers provide increased stiffness and so can reduce building drift (the sway experienced at the top of very tall buildings), thereby reducing the building accelerations during strong winds which might otherwise cause discomfort to occupants.
[edit] Benefits of outriggers
- Reduce overturning moments and building drift.
- By decreasing building overturning moment, provide more economic use of materials required to construct the core.
- Reduce forces in the core’s foundations to provide further economy.
- Used at different levels, outriggers can allow the creation of service floors for plant etc.
NB Outriggers may also be used to stabilise construction plant, such as mobile cranes, which might otherwise overturn.
[edit] Related articles on Designing Buildings Wiki
- Advantages of shell and core.
- Base construction.
- Building height.
- Building regulations.
- Client commissioning.
- Commissioning v testing.
- Commissioning.
- Core.
- Fire risk in high-rise and super high-rise buildings DG 533.
- Fit out.
- Groundscraper.
- Megastructure.
- Megatall.
- Multi-storey structure.
- Multi-storey structure.
- Practical completion.
- Rent free period.
- Secondary ventilation stacks in tall buildings.
- Set to work.
- Shear wall.
- Skeleton frame.
- Skyscraper.
- Storey.
- Structural systems for offices.
- Super-slender.
- Supertall.
- Tall building.
- Tallest buildings in the world.
- The Mile.
- Top 10 skyscrapers located in the UAE.
- Tower.
- Types of building.
Featured articles and news
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.
Internally insulating a historical building
An experimental DIY approach using mineral thermal lime plaster.
Tree species selection for green infrastructure: A guide for specifiers.
The future of the Grenfell Tower site
Principles, promises, recommendations and a decision expected in February 2025.