Low-e glass
The term ‘low-e glass’ is used to describe glass that has a coating added to one or more of its surfaces to reduce its emissivity.
Emissivity is an indicator of the amount of long-wave infra-red radiation which a surface (such as the façade of a building) will emit to its surroundings. According to Kirchoff's law the emissivity of a surface is equal to its radiant absorptivity at a given temperature and wavelength. It is expressed as a proportion of 1, so if a surface absorbs 40% of the long-wave infra-red radiation incident on its surface, it has an emissivity of 0.4.
All bodies which are hotter than 0°K emit thermal radiation and absorb thermal radiation. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is comparatively ‘cold’ compared to the sun and so they are radiating at a much longer wavelength. This anomaly allows us to distinguish between short-wave solar radiation and long-wave infra-red radiation (terrestrial radiation).
Typically, glass is relatively transparent to short-wave solar radiation, but opaque to long-wave infra-red radiation. This is said to produce a ‘greenhouse effect’, where solar radiation enters a space, and heats it up, but the resulting long-wave infra-red radiation emitted by the hot internal surfaces is unable to escape.
However, glass has a relatively high emissivity. This means that although it does not transmit long-wave infra-red radiation incident on its surface, it does absorb it. This absorbed ‘heat’ is then re-radiated.
Low-e coatings can be used to reduce the effective emissivity of the surface of glass so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation.
In cooler climates this means that long-wave infra-red radiation that builds up inside a building is reflected by the glass back into the space, rather than being absorbed by the glass and then partially re-radiated to the outside. This reduces heat loss and so the need for artificial heating.
In hotter climates, a low-e coating means that long-wave infra-red radiation outside the building is reflected back out of the building, rather than being absorbed by the glass and then partially re-radiated to the inside. This reduces the heat build-up inside the building and so the need for cooling. In hotter climates, a low-e coating might be used in conjunction with solar-control glass to reduce the amount of short-wave solar radiation entering the building.
Low-e coatings can reduce the emissivity of glazing from more than 0.8 to 0.2 or even as low as 0.04. Coatings tend to be either hard ‘pyrolytic’ coatings which are applied to molten glass, or soft ‘sputtered’ coatings, which generally need to be protected within the sealed unit.
[edit] Related articles on Designing Buildings
- Angular selective shading systems.
- Brise soleil.
- Choosing the correct glazed facade heating system.
- Computational fluid dynamics (CFD).
- Curved glass.
- Double glazing.
- Double glazing v triple glazing.
- Emissivity.
- g-value.
- Glass manifestation.
- Solar heat gain coefficient.
- Thermal bridge.
- Thermal optical properties.
- Triple glazing.
- U value.
Featured articles and news
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Refurbishment for net zero; the BSRIA white paper
The everyday practice of tackling energy efficiency, fabric first, ventilation, air quality, and occupant wellbeing.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Stress Awareness Week ends but employer legal duties continue.
A call to follow the five Rs for the business and for the staff.
Key points and relevance to construction of meeting, due to reconvene.
Cladding remediation programmes, transparency and target date.
National Audit Office issue report on cladding remediation.