Low-e glass
The term ‘low-e glass’ is used to describe glass that has a coating added to one or more of its surfaces to reduce its emissivity.
Emissivity is an indicator of the amount of long-wave infra-red radiation which a surface (such as the façade of a building) will emit to its surroundings. According to Kirchoff's law the emissivity of a surface is equal to its radiant absorptivity at a given temperature and wavelength. It is expressed as a proportion of 1, so if a surface absorbs 40% of the long-wave infra-red radiation incident on its surface, it has an emissivity of 0.4.
All bodies which are hotter than 0°K emit thermal radiation and absorb thermal radiation. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is comparatively ‘cold’ compared to the sun and so they are radiating at a much longer wavelength. This anomaly allows us to distinguish between short-wave solar radiation and long-wave infra-red radiation (terrestrial radiation).
Typically, glass is relatively transparent to short-wave solar radiation, but opaque to long-wave infra-red radiation. This is said to produce a ‘greenhouse effect’, where solar radiation enters a space, and heats it up, but the resulting long-wave infra-red radiation emitted by the hot internal surfaces is unable to escape.
However, glass has a relatively high emissivity. This means that although it does not transmit long-wave infra-red radiation incident on its surface, it does absorb it. This absorbed ‘heat’ is then re-radiated.
Low-e coatings can be used to reduce the effective emissivity of the surface of glass so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation.
In cooler climates this means that long-wave infra-red radiation that builds up inside a building is reflected by the glass back into the space, rather than being absorbed by the glass and then partially re-radiated to the outside. This reduces heat loss and so the need for artificial heating.
In hotter climates, a low-e coating means that long-wave infra-red radiation outside the building is reflected back out of the building, rather than being absorbed by the glass and then partially re-radiated to the inside. This reduces the heat build-up inside the building and so the need for cooling. In hotter climates, a low-e coating might be used in conjunction with solar-control glass to reduce the amount of short-wave solar radiation entering the building.
Low-e coatings can reduce the emissivity of glazing from more than 0.8 to 0.2 or even as low as 0.04. Coatings tend to be either hard ‘pyrolytic’ coatings which are applied to molten glass, or soft ‘sputtered’ coatings, which generally need to be protected within the sealed unit.
[edit] Related articles on Designing Buildings
- Angular selective shading systems.
- Brise soleil.
- Choosing the correct glazed facade heating system.
- Computational fluid dynamics (CFD).
- Curved glass.
- Double glazing.
- Double glazing v triple glazing.
- Emissivity.
- g-value.
- Glass manifestation.
- Solar heat gain coefficient.
- Thermal bridge.
- Thermal optical properties.
- Triple glazing.
- U value.
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.