Solar heat gain coefficient
Understanding the solar transmittance through translucent and transparent materials such as glass is important for determining the solar heat gain into the space they enclose during sunny conditions. Solar heat gain can be beneficial in the winter, as it reduces the need for heating, but in the summer can cause overheating.
The total solar heat transmittance through transparent and translucent materials is equal to the solar heat that is transmitted through the material directly, plus the solar heat that is absorbed by the material and then re-emitted into the enclosed space. Until recently this was expressed in terms of a shading coefficient which described the amount of solar heat transmitted through a material compared to the amount of solar heat transmitted through a standard sheet of clear float glass 3mm thick.
However, manufacturers are now moving away from shading coefficients. In the USA, they are moving towards the use of solar heat gain coefficients (SHGC) and in Europe, window solar factors or g-values. In essence, these both represent the fraction of incident solar radiation transmitted by a window, expressed as a number between 1 and 0, where 1 indicates the maximum possible solar heat gain, and zero, no solar heat gain. The difference between US and European systems is that they use a different value for air mass.
Actual solar heat gain is dependent on the angle of incidence of solar radiation on the glazing (and so the proportion of diffuse and direct beam solar radiation) as well as the spectral make up of the solar radiation. However, as a simplified method, manufacturers will often only provide a spectrally-averaged solar heat gain coefficient for normally-incident solar radiation. Values for other angles of incidence and for diffuse solar radiation can then be estimated using standard equations or tables for similar windows.
Solar heat gain coefficients, as with g-values can refer to the centre-of-glass SHGC or can relate to the entire window, including frame.
[edit] Related articles in Designing Buildings Wiki
- BREEAM.
- Code for Sustainable Homes.
- Computational fluid dynamics (CFD).
- Emission rates.
- Emissivity.
- Energy certificates.
- Environmental legislation.
- g-value.
- Green deal.
- Leadership in Energy and Environmental Design.
- Low-e glass.
- Shading coefficient.
- Solar reflectance index.
- Sustainability.
- Thermal bridge.
- U value.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
The act of preservation may sometimes be futile.
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
Comments
The definition of SHGC on this page is incomplete as it does not indicate whether the input gain is global (direct + indirect) or just direct, and it does not give the sun angle.
CORRECTION - Actual solar heat gain is dependent on the angle of incidence of solar radiation on the glazing (and so the proportion of diffuse and direct beam solar radiation) as well as the spectral make up of the solar radiation. However, as a simplified method, manufacturers will often only provide a spectrally-averaged solar heat gain coefficient for normally-incident solar radiation. Values for other angles of incidence and for diffuse solar radiation can then be estimated using standard equations or tables for similar windows.
NB This is a wiki site, so if you think an article can be improved, just click 'Edit this article' and improve it.