Double glazing v triple glazing
The term 'glazing' refers to the glass component of a building's façade or internal surfaces. Historically, the installation of glazing was generally undertaken by a specialist glazier, but today it is possible to purchase an entire window which can be fitted by a general contractor.
Whereas in the past windows were generally single glazed, consisting of just a single layer of glass, today there are many different options for glazing. A substantial amount of heat is lost through the window, and so double and triple glazed units have been developed to provide more insulation, improving the energy efficiency of a building.
The building regulations in England and Wales require that new and replacement window units must meet certain energy efficiency requirements. Approved Document L of the building regulations classifies an external window as a 'controlled fitting', which refers to the whole unit including the frame. New and replacement windows in existing homes in England, Wales and Scotland must have a Window Energy Rating (WER) of at least band C or have a U-value of no more than 1.6 W/m²K. This is intended to reduce heat loss, and so the requirement for heating, resulting in lower energy consumption and lower carbon emissions.
Typically, single glazing can achieve a U-value of around 4.5 W/m²K, whilst good double glazing can achieve a U-value of around 1.2 W/m²K.
Double glazing comprises two layers of glass separated by a spacer bar and a continuous hollow frame typically made of aluminium or a low heat-conductive material. The spacer bar is bonded to the panes using a primary and secondary seal which creates an airtight cavity, typically with 6-20 mm between the two layers of glass. This space is filled with air or with a gas such as argon, which improves the thermal properties of the window. Larger cavities may be provided to achieve greater sound reduction.
For more information see: Double glazing.
Triple glazing comprises three panes of glass separated by spacer bars, and two resulting cavities filled with an inert gas, such as argon.
Triple glazed windows can achieve a U-value of between 0.8 W/m²K and 0.5 W/m²K.
However triple glazing is likely to cost around 20% more than double glazing. In addition, it uses more materials to manufacture (and so has a higher embodied energy) and it is heavier, which may require a more substantial supporting structure and increases the complexity of installation. It also requires great care in manufacture and installation to ensure that designed levels of energy performance are actually achieved, and it reduces solar gain in the winter which can increase the amount of heating required.
On the plus side, triple glazing may provide other benefits, such as improved thermal comfort and better acoustic performance and increased security as well reduced solar gain in the summer and a reduction in the occurrence of condensation.
Whether these benefits are worthwhile or not is a matter of some debate, and to a certain extent it depends on the nature of the installation itself. Whilst the reduction in U-value from 1.2 to 0.8 is not dramatic, the decision whether to instal double or triple glazing may be affected by other considerations such as; the extent of glazing in the building, the local climate and degree of exposure of the building, the performance of any existing glazing (for existing buildings) and the opportunity cost compared to other potential energy-saving features such as the installation of a heat pump, super insulation of the walls and roof, the degree of airtightness in the building and so on.
In some colder parts of northern Europe, triple glazing is the normal choice, and the Passivhaus standard requires triple glazing with a U-value of no more than 0.8.
NB the performance of glazing can also be improved by; wider cavities between the panes of glass, low-e coatings, careful design to avoid cold bridges, the addition of secondary glazing and by careful manufacture and installation.
[edit] Related articles on Designing Buildings Wiki
- Air tightness in buildings.
- BFRC window rating scheme.
- Choosing the correct glazed facade heating system.
- Conservation rooflights.
- Domestic windows.
- Double glazing.
- Glass.
- Glazier.
- Glazing.
- Low-E glass.
- Secondary glazing.
- Thermal conduction in buildings.
- Triple glazing.
- Types of window.
- U-values.
- Window.
Featured articles and news
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA has launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.