Lintel
A lintel is a structural horizontal support used to span an opening in a wall or between two vertical supports. It is frequently used over windows and doors, both of which represent vulnerable points in a building's structure. Lintels are generally used for load-bearing purposes, but they can also be decorative.
The most common materials for lintels are timber, steel and concrete.
Timber is low cost, readily available and can be easily cut to size on site. However, it is generally only suited to small openings with low loadings.
Precast concrete lintels are economical and provide robust support for structures such as masonry over door and window openings. They are able to accept a wide range of surface finishes.
Steel lintels are generally made from pre-galvanised steel which is cut and either roll-formed or pressed into the required shape. Steel has the advantage over concrete in that the lintels are usually lighter and are easier to handle on site. The lintel can be shaped so that it is not visible above the opening. Steel is also versatile and can be custom-produced according to the specific building requirement, whether arched, in a corner, forming a bay window, and so on.
In order to specify the type of lintel required, the nature of the load to be supported must be calculated. This includes both dead and imposed loads. Dead loads refer to the static mass of the building components such as floor coverings, roof tiles, masonry, and so on, whereas, imposed loads refer to the weight of furniture, fittings, people and so on.
Lintels must have adequate support at each end, and typically, the length of lintel for a masonry wall is calculated by measuring the total width of the structural opening, and adding 150 mm for end-bearings at each end. If lintels or end-bearings are inadequate specified, they can cause cracking in decorations, or in the structure itself, and ultimately can cause structural failure and collapse.
Lintels are also important in terms of their role in reducing heat loss from a building and the occurrence of damp and condensation. Lintels must be designed and constructed carefully to avoid thermal bridging (a direct connection between the inside and outside through elements that are more thermally conductive than the rest of the building envelope). This may include the creation of a cavity within the wall above the lintel, and the insertion of insulation.
Lintels may also need to incorporate a cavity tray or damp proof membrane to direct water within the wall or cavity to the outside through weep holes. Stop ends at either end of lintels prevent water flowing off the end of the lintel back into the cavity where it may dampen the inside wall.
[edit] Related articles on Designing Buildings
- Architrave.
- Barrel vault.
- Braced frame.
- Cavity tray.
- Concept structural design of buildings.
- Concrete-steel composite structures.
- Concrete vs. steel.
- Damp proof membrane.
- Jamb.
- Long span roof.
- Mullion.
- Reinforced concrete.
- Spandrel.
- Specifying steel lintels.
- Structural engineer.
- Structural steelwork.
- Stud.
- Thermal bridging and the Future Homes Standard.
- Transom.
- Types of brick arches.
- Weep hole.
- Window.
- Window frame.
- Window sill.
Featured articles and news
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.