Ergonomics in construction
This article was written by Ryan Meeks, a Chartered Ergonomist and Human Factors Specialist based in Bristol.
Ergonomics is a branch of science related to the design of workplaces, products and systems to best fit those who use them. The term is derived from two Greek words, ‘ergon’ meaning work, and ‘nomos’ meaning laws.
It can be used interchangeably with ‘human factors’, although ergonomics has more relevance to the environment’s physical aspects, such as workstations and control panels, whereas human factors has relevance to wider socio-technical systems in which people work and the cognitive aspects concerned with human performance.
The Chartered Institute of Ergonomics and Human Factors (CIEHF) is the UK body representing ergonomics.
The aim of effective ergonomics is to apply learning about human abilities and limitations to improve interaction with environments and products, and prevent or limit the risk of illness or injury.
Ergonomists work across and use data and techniques from several different disciplines, such as:
- Anthropometry: Body sizes, shapes, variations.
- Biomechanics: Muscles, levers, forces, strength.
- Environmental physics: Light, heat, noise, radiation, cold, vision, and so on.
- Applied psychology: Learning, errors, differences.
- Social psychology: Group behaviour, communication.
Ergonomics can help address the physical and environmental stresses that might be associated with an activity:
- Physical stresses might include repetitive motions, vibration, or working in awkward positions, and so on.
- Environmental stresses might include indoor air quality, excessive noise or improper lighting, which may induce conditions such as ‘sick building syndrome’.
- Cognitive stresses might include situational awareness, high cognitive workload, complex decision-making processes, attention and communication, and so on.
Ergonomics is particularly relevant in the workplace, where activities may be repeated frequently, of positions maintained for a long period of time. Studies have shown that poor ergonomics is likely to result in a loss of worker productivity, higher rates of lost work days through illness, a lack of staff morale and motivation, and increase employee turnover.
A great deal of research attention is given to the layout of workstations and the design of, and relationship between, chairs, desks, screens and keyboards, and so on. This is because of the risk of developing musculoskeletal disorders (MSDs) such as carpal tunnel syndrome which affect nerves, tendons and muscles, predominantly in the arms, hands and wrists, as a result of repetitive motion and strain.
As construction is a physically demanding work environment, site workers are often at risk of long-term injury. Back sprains and strains are the most common disabling injuries, often due to overexertion and bodily motion.
The table lists some of the most common risks facing construction workers and the ergonomic solutions.
TYPE OF WORK | RISK | ERGONOMIC DESIGN SOLUTION |
Tasks that involve low work, such as using factory tools, tying rebar, hand screeding concrete. | Require repetitive bending, kneeling and squatting. Can cause fatigue, pain and injury. | Auto-feed screw guns with extension, motorised screeds, rebar-tying tools, all enable the worker to stand upright while operating. |
Work that involves repetitive kneeling. | Kneeling on a hard surface puts a lot of direct pressure on knees. Working in kneeling positions for long periods of time can lead to problems such as knee osteoarthritis. | Portable kneeling creeper with chest support reduces stress to knees, ankles and lower back. |
Bending and twisting body during masonry or roofing work. | Frequent stooping causes fatigue and puts stress on lower back, increasing chance of injury. Risk of injury also high if twisting quickly, especially when handling heavy objects. | Split-level adjustable scaffolding allows for less stooping because the materials and work surface are kept near waist-height which is more comfortable and stresses the body less. |
Overhead drilling work. | Long periods of keeping arms and neck in fixed, hard-to-hold positions can lead to serious muscle or joint injuries. | Bit extension shaft for drill or screw gun so it can be held below shoulder and closer to the waist. |
Lifting heavy blocks. | Can cause fatigue and strain, may lead to injury. | Lightweight concrete blocks weigh considerably less than solid blocks and can be carried easier. |
Lifting large windows and sheet materials. | Puts stress on back and shoulders. Injuries can be more serious when having to work in awkward positions or holding materials for long periods of time. Manual placing can also lead to hand injuries. | Vacuum lifters can be used, which attach to windows and flat panels and remove the need for manual handling. |
Using hand-held power tools that produce a lot of vibration. | After long periods of exposure ‘white finger’ can develop or ‘hand-arm vibration syndrome’ (HAVS). | Reduced vibration power tools are designed to produce less vibration. Use along with anti-vibration gloves. |
Sitting at an office desk for long periods of time. | Can result in repetitive strain injuries such as carpal tunnel syndrome. | Maintain comfortable height and distance from desk and screen. Adjustable desks are available that allow a person to use it from a standing position. Ergonomically designed computer equipment is also available. |
More detailed information is available in NIOSH’s guidelines ‘Simple Solutions: Ergonomics for construction workers’.
[edit] Related articles on Designing Buildings Wiki
- Aesthetics and architecture.
- Anthropometrics in architectural design.
- Building pathology.
- Building related illness.
- Construction dust.
- Environmental health.
- Headroom.
- Health and safety.
- Health and Safety at Work Act 1974.
- Health and safety consultant.
- Health and Safety Executive.
- Heat stress.
- Human centric.
- Human comfort in buildings.
- Lighting of construction sites.
- Manual handling.
- Personal protective equipment.
- Scale.
- Sick building syndrome.
- Wellbeing.
- Work at height regulations.
[edit] External references
- Ergonomics.org - What is ergonomics?
- Ergo-plus - Workplace ergonomics
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
Comments