Engineered timber
Contents |
[edit] What is engineered timber?
‘Engineered timber’, also known as 'Mass timber', relates to wood-based composite materials. Typically, solid softwood is processed in a factory, combined with other materials (for example adhesives) and formed into a new material. These engineered timber products combine all the positive attributes of timber, for example strength, weight, sustainability etc, while removing some of the negative attributes, such as variability, stability and limited section sizes.
[edit] Is engineered timber better than natural timber?
Although timber is a strong, flexible, structural material it is also a natural material and so the strength properties can vary significantly based on features of the tree.
Engineered timber products help to overcome these issues by processing the timber and removing some of the variability of the natural material. Solid timber can be converted to particles, strands or laminates which can be combined with other materials, such as glues, to form composite wood products.
The principal reasons for transforming wood into engineered timber products include to:
- Transcend the dimensional limitations of sawn wood.
- Improve performance, structural properties, stability or flexibility
- Transform the natural material into a homogenous product.
- Utilise low-grade material, minimise waste and maximise the use of a valuable resource.
[edit] What are the advantages of engineered timber products?
The advantages of engineered timber products include:
- improved structural properties and dimensional stability
- large sections and lengths
- reduced overall wastage of the timber resource
- less material variability aesthetic variety utilisation of logs unsuitable for conversion to sawn timber.
In addition, the products are produced at low moisture contents therefore reducing the risk of movement due to drying in service in internal environments.
Since structural timber composites are factory produced, the only constraints on length and section size are the practicalities of transportation and handling. This offers many advantages to structural engineers. For example, long span/double spanning engineered I-joists can be used in the construction of multi-storey timber framed buildings. These long, multiple span I-joists help to improve the disproportionate collapse design of the building, making construction of the buildings more simple and cost effective.
[edit] What are the types of engineered timber products?
Engineered timber products include layed composites which are considered structural timber solutions. Their properties are consistent and they are typically stronger and longer spanning than solid timber sections:
Engineered timber products can also include particle composites such as:
- Parallel strand timber
- Particle boards
- Orientated strand board (OSB)
--Timber Development UK 16:52, 14 Dec 2022 (BST)
[edit] Related articles on Designing Buildings
- 11 things you didn't know about wood.
- A guide to the use of urban timber FB 50.
- Biomaterial.
- Carpentry.
- Chip carving.
- Cross-laminated timber.
- Facts about forestry.
- Glulam.
- Janka hardness rating scale.
- Laminated veneer lumber LVL.
- Modified wood.
- Nails - a brief history.
- Panelling.
- Physical Properties of Wood.
- Plywood.
- Sustainable timber.
- Testing timber.
- The differences between hardwood and softwood.
- Timber and healthy interiors.
- Timber vs wood.
- Types of timber.
- Wainscoting.
- Whole life carbon assessment of timber.
- Wood around the world.
- Wood, embodied carbon and operational carbon.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.