Physical Properties of Wood
Contents |
Introduction
Wood is one of the most versatile and widely used materials in the world. It can be used in anything from wood carving and creating small wooden items, such as chairs and rocking horses, to building timber structures and sheds.
It also has a lot of scientific properties associated with it, and every type of wood that is available can exhibit similar, and also different, properties. As such, it is important to understand how different types of wood can be used, so you can make sure that you don’t use the wrong type of wood in your project.
Types of wood
There are two distinct types of wood:
- Hardwoods come from deciduous trees – trees whose leaves fall each autumn – such as oak, mahogany, beech, and birch.
- Softwoods come from coniferous trees – trees whose cones/needles remain all year round – such as cedar, spruce, fir, cypress, and pine.
Specific gravity
The specific gravity (SG) of a substance, is the ratio between the density of the specific substance and the density of a reference substance provided which occupies the same volume. In most cases, the reference substance is water, as its density, in terms of grams per cubic centimetre, is one.
If moisture content is neglected or minimised, the more rings that a tree has within a given space, the denser it is, meaning its specific gravity is higher. Woods that have a higher specific gravity tend to have more lignin in their cells – this increases the rigidity of the wood and its resistance to rotting – and fewer air spaces, meaning that it can’t intake water easily compared to lower specific gravity woods.
Moisture content
One of the most noticeable properties of wood is that it is a hygroscopic material, meaning that it tends to absorb moisture from the air depending on the humidity of its surroundings. If the humidity is relatively high, then the wood will absorb more moisture.
Moisture content is very important when using wood in building, crafting, and manufacturing as it can affect the strength and stiffness of wood. This is because the presence of water affects the bonds between the fibres, effectively weakening the wood and making it more pliable.
Temperature
It is important to understand the thermal properties that wood exhibits.
Thermal conductivity is the ability of a material to conduct heat. For wood, it can range between 0.01 and 0.2 W m-1 K-1, which is relatively low, considering that for copper, it is over 400. The reason for this is because wood is quite porous. The values have a wide range because thermal conductivity decreases as the density decreases.
Thermal expansion is also relatively low in wood, meaning that it can retain its original structure in hot climates.
In freezing temperatures, the water within the wood can expand, causing the it to crack. However, since it has a low thermal conductivity, it means that, in cold weather, it can retain its warm interior and keep the cold weather out, which is why wood cabins are relatively common in arctic conditions.
--G&S Specialist Timber 09:10, 17 Jan 2017 (BST)
Related articles on Designing Buildings
- 11 things you didn't know about wood.
- A guide to the use of urban timber FB 50.
- Ancient Woodland.
- Birch wood.
- Boardwalk.
- Carpentry.
- Chip carving.
- Confederation of Timber Industries.
- Cross-laminated timber.
- Definition of tree for planning purposes.
- Engineered bamboo.
- European Union Timber Regulation.
- Forest Stewardship Council.
- Janka hardness rating scale.
- Lime wood.
- Padauk wood.
- Pine leaves.
- Plywood.
- Predicting service life of timber structures.
- Programme for the Endorsement of Forest Certification.
- Softwood.
- Timber.
- Timber preservation.
- Timber vs wood.
- Tree preservation order.
- Tree rights.
- Tulipwood.
- Types of timber.
- Veneer.
- Walnut.
- Wrot timber.
- Best Woods for Wood Carving
- The Differences Between Hardwood and Softwood
- The Scientific Properties of Wood
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Preparing for the future: how specifiers can lead the way
Effective specificationand the Future Homes Standard.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February